Chaire Modélisation Mathématique et Biodiversité

École Polytechnique, Muséum national d'Histoire naturelle
Fondation de l'École Polytechnique
VEOLIA Environnement

Logo du CMAP

Logo du MNHN

Logo du MNHN

2024

      1. Boutillon, N., Large deviations and the emergence of a logarithmic delay in a nonlocal linearised Fisher–KPP equation, Nonlinear Analysis 240 (2024), DOI: https://doi.org/10.1016/j.na.2023.113465
      2. Huillet, T.. Occupancy problems related to the generalized Stirling numbers. Accepted Nov. 2023. J. Stat. Phys. Volume 191, article number 5, (2024).
      3. Marguet, A., Smadi, C., Spread of parasites affecting death and division rates in a cell population, Stochastic Processes and their Applications 168, 2024
      4. Maisonneuve, L., Smadi, C., Llaurens, V., Which cues are sexy? The evolution of mate preference in sympatric species reveals the contrasted effect of adaptation and reproductive interference, Evolution Letters, 2024
      5. Velleret A. Two level natural Selection with a quasi-stationarity approach. Discrete and Continuous Dynamical Systems - B, 2024, 29(2): 1019-1057. DOI:  https://doi:10.3934/dcdsb.2023122

2023

      1. Abakarova, M., Marquet, C., Rera, M., Rost, B., Laine, E., Alignment-based protein mutational landscape prediction: doing more with less. Genome Biology and Evolution (2023)
      2. Anagnostakis, A., Lejay, A. et Villemonais, D.. General diffusion processes as the limit of time-space Markov chains, Annals of Applied Probability, 33(5): 3620-3651 (October 2023). DOI: 10.1214/22-AAP1902
      3. Ardichvili, A., Loeuille, N. & Dakos, V (2023) Evolutionary emergence of alternative stable states in shallow lakes. bioarxiv, doi: https://doi.org/10.1101/2022.02.23.481597, recommended by Tim Coulson in Peer Community in Ecology, Ecology Letters, 26(5), 692-705.
      4. Aubry, P. On univariate optimal partitioning by complete enumeration. MethodsX 10, 102154 (2023). DOI : https://doi.org/10.1016/j.mex.2023.102154
      5. Aubry, P., Quaintenne, G., Dupuy, J., Francesiaz, C., Guillemain, M., Caizergues, A. On using stratified two-stage sampling for large-scale multispecies surveys. Ecological Informatics 77, 102229 (2023). DOI : https://doi.org/10.1016/j.ecoinf.2023.102229
      6. Aubry, P. On the correct implementation of the Hanurav-Vijayan selection procedure for unequal probability sampling without replacement. Communications in Statistics - Simulation and Computation 52, 1849-1877 (2023). DOI : https://doi.org/10.1080/03610918.2021.1891431
      7. Bansaye, V., Caballero, M.-E., Méléard, S., San Martin, J., Scaling limits of bisexual Galton-Watson processes, Stochastics 95 (2023), no. 5, 749–784.
      8. Bansaye, V., Gu C., Yuan L.. A growth-fragmentation-isolation process on random recursive trees and contact tracing. Ann. Appl. Probab. 33(6B): 5233-5278, 2023. DOI: 10.1214/23-AAP1947
      9. Bansaye, V., Cloez, B.. From the distributions of times of interactions to preys and predators dynamical systems. Journal of Mathematical Biology. Vol. 87, Num. 2, 2023. DOI: 10.1007/s00285-023-01925-5
      10. Barrier N., Lengaigne, M., Rault, J., Guiet, J., Person, R., Ethé, C., Aumont, O., Maury, O., 2023. Mechanisms underlying the epipelagic ecosystem response to ENSO in the equatorial Pacific Ocean. Progress in Oceanography. https://doi.org/10.1016/j.pocean.2023.103002
      11. Barton N.H., Etheridge, A.M., Véber A. The infinitesimal model with dominance. Genetics, 225(2) : iyad133 (2023). DOI: https://doi.org/10.1093/genetics/iyad133
      12. Benaïm M., Lobry C., Sari T. and Strickler E. Untangling the role of temporal and spatial variations in persistence of populations. Theoretical Population Biology, 154 (2023) DOI: https://doi.org/10.1016/j.tpb.2023.07.003
      13. Bitseki Penda, S. V. and Delmas, J.-F., Central limit theorem for kernel estimator of invariant density in bifurcating Markov chains models. J. of Theo. Probab., Vol. 36, pp. 1591-1625, 2023. (doi:10.1007/s10959-022-01205-w).
      14. Blancas A., Gufler S., Kliem S., Tran V.C., Wakolbinger A. Evolving genealogies for branching populations under selection and competition. The Annals of Applied Probability, Vol. 33, No. 6A, 4528--4569 (2023). DOI : http://dx.doi.org/10.1214/22-AAP1925
      15. Boldin B, Diekmann O & Metz JAJ, Population growth in discrete time: a renewal equation-oriented survey. J. Differ. Equ. Appl.  (2023) doi.org/10.1080/10236198.2023.2265499
      16. Boutin, M., Costa, M., Fontaine, C., Perrard, A., Llaurens V., Influence of sex-limited mimicry on extinction risk in Aculeata: a theoretical approach, PCI Ecology (2023), https://doi.org/10.1101/2022.10.21.513153
      17. Bryndum-Buchholz A., Blanchard J. L., Coll M., du Pontavice H., Everett J. D., Guiet J., Heneghan R. F., Maury O., Novaglio C., Palacios‐Abrantes J., Petrik C. M., Tittensor D. P. and Lotze, H. K., 2023. Applying ensemble ecosystem model projections to future-proof marine conservation planning in the Northwest Atlantic Ocean. Facets, 8, pp.1–16. Doi :https://doi.org/10.1139/facets-2023-0024.
      18. Cairo M, Monnet AC, Robin S, Porcher E, Fontaine C. Identifying pesticide mixtures at country-wide scale. PCI Ecotoxicology & Environmental Chemistry.  (2023) https://hal.science/hal-03815557
      19. Cambon, M. C., Trillat, M., Lesur‐Kupin, I., Burlett, R., Chancerel, E., Guichoux, E., ... & Vacher, C. Microbial biomarkers of tree water status for next‐generation biomonitoring of forest ecosystems. (2023). Molecular Ecology, 32(22), 5944-5958. (2023). https://doi.org/10.1111/mec.17149
      20. Cansell C., Goepp V., Bain F., Todd N., Douard V., Monnoye M., Sanchez C., Pietrancosta N., Rovere C., Denis R, Luquet S., Rera M. Two phases model of ageing in mice: towards a better identification of age-related and late-life metabolic decline. BMC Biology (2023)
      21. Champagnat, N., Méléard S., Mirrahimi S., Tran C.V., Filling the gap between individual-based evolutionary models and Hamilton-Jacobi equations, Journal de l'Ecole polytechnique- Mathematiques, Tome 10 (2023), p. 1247-1275. https://doi.org/10.5802/jep.244
      22. Champagnat, N., Méléard S., Tran V.C., Multiscale eco-evolutionary models: from individuals to populations, ICM2022, International Mathematical Union, EMS Press, (2023). https://doi.org/10.4171/icm2022.
      23. Champagnat, N., Villemonais, D. General criteria for the study of quasi-stationarity. Electronic Journal of Probability, vol. 28, pp. 1-84 (2023). DOI: 10.1214/22-EJP880
      24. Champagnat, N., Hass, V. Existence, uniqueness and ergodicity for the centered Fleming-Viot process. Stochastic Processes and their Applications, 166 :104219, (2023). DOI : https://doi.org/10.1016/j.spa.2023.09.006
      25. Chaudru de Reynal, P.-E., Duong, M. H., Monmarché, P., Tomasevic, M., Tugaut, J. 2023. Reducing exit time of diffusions with repulsive interactions. ESAIM: PS. 27:723-748. DOI https://doi.org/10.1051/ps/2023012
      26. Chazottes, J.R., Collet, P., Méléard, S.., Large population limit of the spectrum of killed birth-and-death processes,  J. Funct. Anal. 285 (2023), no. 9, Paper No. 110092.
      27. Clin, P., Grognard, F., Andrivon, D., Mailleret, L., & Hamelin, F. M. (2023). The proportion of resistant hosts in mixtures should be biased towards the resistance with the lowest breaking cost. PLOS Computational Biology, 19(5), e1011146. https://doi.org/10.1371/journal.pcbi.1011146
      28. Cloez, B., Fritsch, C. Quasi-stationary behavior for a piecewise deterministic Markov model of chemostat: the Crump–Young model. 
        Annales Henri Lebesgue, Volume 6 (2023), pp. 1371-1427.
      29. Collet, P., Dunlop, F., Huillet, T. and Mardin, A.. A Gibbsian random tree with nearest neighbour interaction. J. Stat. Phys. 190, 78 (2023). https://doi.org/10.1007/s10955-023-03087-6arXiv:2211.08826.
      30. Cousien A., Dhersin J.S., Tran V.C., Vo T.P.T. Respondent-driven sampling on sparse Erdös-Rényi graphs. Acta Mathematica Vietnamica, Vol. 48, 479--513 (2023). DOI : https://doi.org/10.1007/s40306-023-00510-8
      31. Coron, C., Costa, M., Leman H, Llaurens, V., Smadi. C., Origin and persistence of polymorphism in loci targed by dissassortative preference: a general model, Journal of Mathematical Biology, 86(4) (2023) https://doi.org/10.1007/s00285-022-01832-1
      32. de Cubber, Sébastien Lefebvre, L., Lancelot, T., Schaffer Ferreira Jorge, D., Gaudron, S. M. Unravelling mechanisms behind population dynamics, biological traits and latitudinal distribution in two benthic ecosystem engineers: A modelling approach. Progress in Oceanography, 2023, 219, pp.103154. ff10.1016/j.pocean.2023.103154
      33. De Cubber, L., Trenkel, V., Diez, G., Gil-Herrera, J., Novoa Pabon, A. M., Eme,D., Lorance, P, 2023. Robust identification of potential habitats of a raredemersal species (blackspot seabream) in the Northeast Atlantic. Ecol. Model. 110255. https://doi.org/10.1016/j.ecolmodel.2022.110255
      34. Delmas, J.-F., Dronnier, D. and Zitt, P.-A., Optimal vaccination: various (counter) intuitive examples. J. of Math. Biol., Vol. 86, n°26, 57 p., 2023, DOI: https://doi.org/10.1007/s00285-022-01858-5
      35. Doumic, M., Hoffmann, M., Individual and population approaches for calibrating division rates in population dynamics: Application to the bacterial cell cycle, Modeling and Simulation for Collective Dynamics, 40, WORLD SCIENTIFIC, pp.1-81, 2023, Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore. Book chapter. https://dx.doi.org/10.1142/9789811266140_0001
      36. Dubs, F., Enjalbert, J., Barot, S., Porcher E, Allard V, Pope C, Gauffreteau A, Niboyet A,  Pommier T, Saint-Jean S, Vidal T, Le Roux X. 2023. Unfolding the link between multiple ecosystem services and bundles of functional traits to design multifunctional crop variety mixtures. Agronomy for Sustainable Development. 43, 71. (2023) https://doi-org.inee.bib.cnrs.fr/10.1007/s13593-023-00924-6
      37. Dupont L., P. Le Mézo, O. Aumont, L. Bopp, C. Clerc, C. Ethé, O. Maury., 2023. High trophic level feedbacks on global ocean carbon uptake and marine ecosystem dynamics under climate change. Glob Change Biol. 2023;00:1–12
      38. Ecotière, C., Billiard, S., André, J.-B., Collet, P., Ferrière, R., Méléard, S., Human-environment feedback and the consistency of proenvironmental behaviour, PloS Computational Biology (2023). https://doi.org/10.1371/journal.pcbi.1011429.
      39. Erny X, Löcherbach E, Loukianova D. Strong error bounds for the convergence to its mean field limit for systems of interacting neurons in a diffusive scaling. Annals of Applied Probability 33(5): 3563-3586 (October 2023). DOI: 10.1214/22-AAP1900
      40. Evans, L. C., Melero, Y., Schmucki, R., Boersch‐Supan, P. H., Brotons, L., Fontaine, C., ... & Oliver, T. H. (2023). Mechanisms underpinning community stability along a latitudinal gradient: Insights from a niche‐based approach. Global Change Biology, 29(12), 3271-3284.
      41. Finand, B., Loeuille, N., Bocquet, C., Fédérici, P., Ledamoisel, J., Monnin, T. Habitat fragmentation through urbanization selects for low dispersal in an ant species. (2023) Oikos, doi: 10.1111/oik.10325
      42. Finand, B., Monnin, T. & Loeuille, N. (2023) Evolution of dispersal and the maintenance of fragmented metapopulations, bioarxiv, now recommended in PCI Ecology, Oikos, doi: 10.1111/oik.10490
      43. Fontaine, S., Abbadie, L., Aubert, M., Barot, S., Bloor, J., Derrien, D., Duchenne, O., Gross, N., Henneron, L., Le Roux, X., Loeuille, N., Michel, J., Recous, S., Wipf, D., Alvarez, G. (2023) Plant-soil synchrony in nutrient cycles: learning from ecosystems to design sustainable agrosystems. Global Change Biology, doi: https://doi.org/10.1111/gcb.17034
      44. Fournier, N., Tomasevic, M.. Particle approximation of the doubly parabolic Keller-Segel equation in the plane. J. Funct. Anal. Vol. 285, article 110064, 2023. DOI https://doi.org/10.1016/j.jfa.2023.110064
      45. Freoa, L., Chevin, L.M., Christol, P., Méléard, S., Rera, M., Véber, A.  and Gibert, J.M..2023, Drosophilid cuticle pigmentation impacts body temperature. Scientific Reports 13:3513, https://doi.org/10.1038/s41598-023-30652-6.
      46. François G. Ged. Moran model with simultaneous strong and weak selections: convergence towards a $\Lambda $-Wright–Fisher SDE. MathematicS In Action, Volume 12 (2023) no. 1, pp. 87-116. doi : 10.5802/msia.33.
      47. Goncalves, B., Huillet, T., 2023. E. L\"{o}cherbach. On decay-surge population models. Advances in Applied Probability, 55.2
      48. González Casanova, A, Smadi, C, Wakolbinger, A. 2023. Quasi-equilibria and click times for a variant of Muller’s ratchet, Electronic Journal of Probability 28.
      49. Guibourd de Luzinais V., du Pontavice H., Reygondeau G., Barrier N., Blanchard J.L., Bornarel V., M. BüchnerI, W.W.L. Cheung, T.D. Eddy, J.D. Everett, J. Guiet, C.S. Harrison, O. Maury, C. Novaglio, C.M. Petrik, J. Steenbeek, D.P. Tittensor, D. Gascuel, 2023. Trophic amplification: A model intercomparison of climate driven changes in marine food webs. PLoS ONE 18(8): e0287570. https://doi.org/10.1371/journal.pone.0287570
      50. Hamelin, F.M., Hilker, F.M. & Dumont, Y. Spatial spread of infectious diseases with conditional vector preferences. J. Math. Biol. 87, 38 (2023). https://doi.org/10.1007/s00285-023-01972-y
      51. Henry, B., Méléard, S., Tran. V.C., Time reversal of spinal processes for linear and non-linear branching processes near stationarity.  Electron. J. Probab. 28: 1-27 (2023). DOI: 10.1214/23-EJP911
      52. Huillet, T. and Martinez, S. Sterile versus prolific individuals pertaining to linear-fractional Bienaym\'{e}-Galton-Watson trees J. Stat. Mech. (2023) 083405. DOI 10.1088/1742-5468/aceb52.
      53. Huillet, T., Moehle, M.. On Bernoulli trials with unequal harmonic success probabilities. Metrika (2023). https://doi.org/10.1007/s00184-023-00913-5.
      54. Janson, S., Mailler, C. and Villemonais, D., Fluctuations of balanced urns with infinitely many colours, Electronic Journal of Probability, 28: 1-72 (2023). DOI: 10.1214/23-EJP951
      55. Kaakai, S., El Karoui, N., Birth Death Swap population in random environment and aggregation with two timescales, Stochastic Processes and their Applications, Volume 162, 2023, https://doi.org/10.1016/j.spa.2023.04.017.
      56. Labeyrie, V., Donnet, S.; S. Friedman, R.; Fatou Faye, N.; Cobelli, O.; Baggio, J.; Kroetz, K.; R. Felipe-Lucia, M., Ashander, J.; Raimond, C., 2023, Linking seed networks and crop diversity contributions to people: a case study in small-scale farming systems in Sahelian Senegal. Volume 211, 103726, Agricultural Systems https://doi.org/10.1016/j.agsy.2023.103726
      57. Lepori, V. J., Loeuille, N. & Rohr, R. (2024) Robustness vs productivity during evolutionary community assembly: short-term synergies and long-term trade-offs. bioarxiv, https://doi.org/10.1101/2022.10.14.512255, Proceedings of the Royal Society (B), doi:0.1098/rspb.2023.2495
      58. Lerch, B.A., Rudrapatna, A., Rabi, N., Wickman, J., Koffel, T., Klausmeier, C.A., Connecting local and regional scales with stochastic metacommunity models: Competition, ecological drift, and dispersal. Ecological Monographs. e1591 (2023). doi:10.1002/ecm.1591
      59. Louvet, A. Stochastic measure-valued models for populations expanding in a continuum. ESAIM: Probability and Statistics 27, 221-277. (2023) DOI : https://doi.org/10.1051/ps/2022020
      60. Maisonneuve L, Elias M, Smadi C, Llaurens V, 2023 The limits of evolutionary convergence in sympatry: reproductive interference and developmental constraints leading to local diversity in aposematic signals, American Naturalist, 201(5), E110-E126.
      61. Maisonneuve L., Elias, M, Smadi, C., Llaurens, V., (2023) The limits of evolutionary convergence in sympatry: reproductive interference and historical constraints leading to local diversity in warning traits, The American Naturalist 201 (5).
      62. Martin, H. Measure framework for the pure selection equation: global well posedness and numerical investigations. MathematicS In Action, Tome 12 (2023) no. 1, pp. 155-173. doi : 10.5802/msia.36.
      63. Mayorcas, A., Tomasevic, M.. Blow-up for a Stochastic Model of Chemotaxis Driven by Conservative Noise on R^2. J. Evol. Equ. 23, 57, 2023. DOI https://doi.org/10.1007/s00028-023-00900-3
      64. Metz J.A.J., Boldin B., The evolution of respiratory disease virulence and diversity, Evolution 77(11) 2392-2408 (2023) doi.org/10.1093/evolut/qpad145
      65. Narayanan, N., Hale, K.R.S., Koffel, T, McPeek, S.J., Theoretical advances in the ecology and evolution of mutualistic interactions – Bulletin of the Ecological Society of America. e2057 (2023). doi:10.1002/bes2.2057
      66. Olivera, C., Richard, A., Tomasevic, M., (2023). Quantitative particle approximation of nonlinear Fokker-Planck equations with singular kernel. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Vol. XXIV: 691-749. DOI: https://doi.org/10.2422/2036-2145.202105_087
      67. Picot A, Shibasaki S, Meacock OJ, Mitri S. Microbial interactions in theory and practice: when are measurements compatible with models? Current Opinion in Microbiology 75 102354, 2023. DOI: https://doi.org/10.1016/j.mib.2023.102354
      68. Planas-Sitjà, I., Monnin, T., Loeuille, N. and Cronin, A.L. (2023), To disperse or compete? Coevolution of traits leads to a limited number of reproductive strategies. Oikos, 2023: e09972. https://doi.org/10.1111/oik.09972
      69. Popovic L., Véber A. A spatial measure-valued model for chemical reaction networks in heterogeneous systems. Ann. Applied Probab., 33(5) : 37063754 (2023). DOI: https://doi.org/10.1214/22-AAP1904
      70. Prosnier, L., Loeuille, N., Hulot, F., Renault, D., Piscart, C., Bicocchi, B., Deparis, M., Lam, M., Médoc, V. (2023) Parasites make hosts more profitable, but less available to predators. Ecology, Oikos https://doi.org/10.1111/oik.10469
      71. Roze, D. Causes and consequences of linkage disequilibrium among transposable elements within eukaryotic genomes. Genetics, 224:iyad058. (2023)
      72. Rohr, R.P. and Loeuille, N. (2023), Effects of evolution on niche displacement and emergent population properties, a discussion on optimality. Oikos, 2023: e09472. https://doi.org/10.1111/oik.09472
      73. C Smadi, V Vatutin, Reduced processes evolving in a mixed environment, Stochastic Models 39 (1), 2023
      74. Tagliabue A., B. S. Twining, N. Barrier, O. Maury, M. Berger, L. Bopp, 2023. Ocean iron fertilization may amplify climate change pressures on marine animal biomass for limited climate benefit. Glob Change Biol.  doi:10.1111/gcb.16854
      75. Tchouanti, J. Well posedness and stochastic derivation of a diffusion-growth-fragmentation equation in a chemostat. Stoch PDE: Anal Comp (2023). https://doi.org/10.1007/s40072-023-00288-8
      76. Tezenas E., Giraud T., Véber A., Billiard S. The fate of recessive deleterious or overdominant mutations near mating-type loci under partial selfing. Peer Community Journal, 3: e14 (2023). DOI:  https://doi.org/10.24072/pcjournal.238
      77. Tomasevic, M., Propagation of chaos for stochastic particle systems with singular mean-field interaction of Lp - Lq type. Electron. Commun. Probab. 28 1 - 13, 2023.  DOI: 10.1214/23-ECP539
      78. Tromeur, E., and Loeuille, N.. (2023). Effects of adaptive harvesting on fishing down processes and resilience changes in predator-prey and tritrophic systems. bioRxiv 290460, ver 5 peer-reviewed and recommended by PCI Ecology. https://doi.org/10.1101/290460, PCI Journal.
      79. Velleret A. Exponential quasi-ergodicity for processes with discontinuous trajectories. ESAIM: Probability and Statistics 27 (2023) 867-912. DOI: https://doi.org/10.1051/ps/2023016
      80. Velleret A. Adaptation of a population to a changing environment under the light of quasi-stationarity. Advances in Applied Probability (2023) 1-52. DOI: https://doi:10.1017/apr.2023.28
      81. Wickman, J, T Koffel, CA Klausmeier. A theoretical framework for trait-based eco-evolutionary dynamics: population structure, intraspecific variation, and community assembly. The American Naturalist. 201(4): 501-522 (2023). doi:10.1086/723406
      82. Zane, F, Bouzid, H., Marmol, S., Brazane, M, Besse, S., Molina, J., Cansell, C., Aprahamian, F., Durand, S, Ayache, J., Antoniewski, C., Todd, N., Carré, C., Rera, M.. Smurfness‐based two‐phase model of ageing helps deconvolve the ageing transcriptional signature. Aging Cell (2023)


2022

  1. Abraham R., and Delmas, J.-F. and Nassif M., (2022). Global regime for general additive functionals of conditionned Bienaymé-Galton-Watson trees. Probab. Theor. Rel. Fields, Vol. 182, pp. 277-351. doi:10.1007/s00440-021-01095-9.
  2. Aubry, P., 2022. On evaluating the efficiency of the delta-lognormal mean estimator and predictor. MethodsX 9, 101830.
  3. Aubry, P., Francesiaz, C., 2022. On comparing design-based estimation versus model-based prediction to assess the abundance of biological populations. Ecological Indicators 144, 109394.
  4. Bansaye V., Cloez B., Gabriel P., Marguet A., (2022). A non-conservative Harris ergodic theorem. Journal of the London Mathematical Society, 106, 2459-2510. doi: https://doi.org/10.1112/jlms.12639.
  5. Bastide, P., Mariadassou, M., & Robin, S. (2022). Modèles d’évolution de caractères continus. Dans : Didier, G., & Guindon, S. (2022). Modèles et méthodes pour l’évolution biologique. ISTE Group. (Version anglaise à paraître chez le même éditeur)
  6. Benaïm, M., Champagnat, N., Oçafrain, W. and Viillemonais, D. Transcritical, (2022). Bifurcation for the conditional distribution of diffusion process. Journal of Theoretical Probability. Doi: 10.1007/s10959-022-01216-7
  7. Billiard S., Leman H., Rey T., Tran V.C., (2022). Continuous limits of large plant-pollinator random networks and some applications. MathematicS In Action (2022).
  8. Bitseki Penda S. V. and Delmas, J.-F. (2022). Central limit theorem for kernel estimator of invariant density in bifurcating Markov chains models. J. of Theo. Probab. doi:10.1007/s10959-022-01205-w.
  9. Bitseki Penda S. V., and Delmas, J.-F., (2022). Central limit theorem for bifurcating Markov chains under pointwise ergodic conditions. Ann. Appl. Probab., Vol 32(5), pp. 3817-3849. doi:10.1214/21-AAP1774.
  10. Calvez, V., Henry, B., Méléard, S. and Tran, V.C., (2022). Dynamics of lineages in adaptation to a gradual environmental change, Ann. H. Lebesgue 5, 729–777. https://doi.org/10.5802/ahl.135
  11. Champagnat, N., Méléard, S., Tran, V.C., (2022). Multiscale eco-evolutionary models: from individuals to populations, ICM2022, International Mathematical Union, published by EMS Press. DOI 10.4171/ICM2022/24 
  12. Chiquet, J., Cros, M. J., Mariadassou, M., Peyrard, N., & Robin, S. (2022). Le modèle Poisson log-normal pour l’analyse de distributions jointes d’abondance. Approches statistiques pour les variables cachées en écologie, 175. Dans : Peyrard, N., & Gimenez, O. (2022). Approches statistiques pour les variables cachées en écologie. ISTE Group. (Version anglaise: Statistical Approaches for Hidden Variables in Ecology, chez le même éditeur
  13. Cohen, J. E., Huillet, T. E., (2022). Taylor's law for some infinitely divisible probability distributions from population models. J. Stat. Phys., 188, no. 3, Paper No. 33, 17 pp. 60E07 (92D25)
  14. Cordelier P, Costa M, Fehrenbach J., (2022). Slow-Fast Model and Therapy Optimization for Oncolytic Treatment of Tumors. Bull Math Biol. 84(6):64. doi: 10.1007/s11538-022-01025-3.
  15. Coron, C., Costa, M., Leman, H., Llaurens, V., Smadi, C., (2022). Origin and persistence of polymorphism in loci targeted by disassortative preference: a general model. J. Math. Biol. 86, 4. https://doi.org/10.1007/s00285-022-01832-1
  16. Czuppon P., Billiard S. Revisiting the number of self-incompatibility alleles in finite populations: From old models to new results. Journal of Evolutionary Biology 35:1296-1308 (2022).  DOI: 10.1111/jeb.14061
  17. David O., Le Rouzic A., Dillmann C., (2022). Optimization of sampling designs for pedigrees and association studies. Biometrics 78, 3. DOI : https://doi.org/10.1111/biom.13476
  18. Delmas, J.-F. and Dronnier, D. and Zitt, P.-A., (2022). An infinite-dimensional metapopulation SIS model. Journ. Differential Equations, Vol. 313, pp. 1-53. doi.org/10.1016/j.jde.2021.12.024.
  19. Erny, X., Löcherbach, E., Loukianova, D., (2022). Mean field limits for Hawkes processes in a diffusive regime, Bernoulli 28 (1) 125 - 149. DOI: https://doi.org/10.3150/21-BEJ1335
  20. Erny, X., (2022). Well-posedness and propagation of chaos for McKean-Vlasov equations with jumps and locally Lipschitz coefficients, Stochastic Processes and their Appications 150 92 - 214. DOI: https://doi.org/10.1016/j.spa.2022.04.012
  21. Erny, X., Löcherbach, E., Loukianova, D., (2022). White-noise driven conditional McKean-Vlasov limits for systems of particles with simultaneous and random jumps, Probability Theory and Related Fields. DOI: https://doi.org/10.1007/s00440-022-01139-8
  22. Erny X., (2022). Mean field system of a two-layers neural model in a diffusive regime, Mathematical Neuroscience and Applications August 25. DOI: https://doi.org/10.46298/mna.7570
  23. Evans, L. C., Melero, Y., Schmucki, R., Boersch‐Supan, P. H., Brotons, L., Fontaine, C., ... & Oliver, T. H. (2022). Bioclimatic context of species' populations determines community stability. Global Ecology and Biogeography, 31(8), 1542-1555.
  24. Goncalves, B., Huillet, T., Löcherbach E., (2022). On decay-surge population models. to appear in Advances in Applied Probability, 55.2. arXiv:2012.00716
  25. Goncalves, B., Huillet, T. E., (2022). Keeping random walks safe from extinction and overpopulation in the presence of life-taking disasters. Math. Popul. Stud. 29, no. 3, 128–157. 92D15 (60J10 92D25)
  26. Goncalves, B., Huillet, T., Löcherbach, E., (2022). On population growth with catastrophes. Stoch. Models 38, no. 2, 214–249. 60J25 (60H10 92D25)
  27. Hoang, V. H., Ngoc, T. M. P., Rivoirard, V., Tran, V. C., (2022). Nonparametric estimation of the fragmentation kernel based on a PDE stationary distribution approximation, Scandinavian Journal of Statistics 49(1):4-43. https://doi.org/10.1111/sjos.12504
  28. Huillet, T. E.; (2022). Chance Mechanisms Involving Sibuya Distribution and its Relatives. Sankhya B 84 , no. 2, 722–764.
  29. Huillet, T.; Möhle, M., (2022). Asymptotic genealogies for a class of generalized Wright-Fisher models. Mod. Stoch. Theory Appl. 9, no. 1, 17–43. 60J90 (26A12 92D15)
  30. Huillet, T.; Martinez, S., (2022). Revisiting John Lamperti's maximal branching process. Stochastics, 94, no. 2, 277–310. 60J80
  31. Jay P., Tezenas E., Véber A., Giraud, T. (2022). Sheltering of deleterious mutations explains the stepwise extension of recombination suppression on sex chromosomes and other supergenes. PLoS Biology, 20(7): e3001698. DOI: https://doi.org/10.1371/journal.pbio.3001698
  32. Jollant, F., Blanc-Brisset, I., Cellier, M., Akkaoui M. A., Tran, V. C., Hamel, J.F., Piot, M. A., Nourredine, M., Nisse, P., the French Poison Center Control Research Group, Hawton, K., Descatha, A., and Vodovar, D., Temporal trends in calls for suicide attempts to poison control centers in France during the COVID-19 pandemic : a nationwide study, European Journal of Epidemiology 37:901-913 (2022). https://doi.org/10.1007/s10654-022-00907-z
  33. Léculier, A., and Mirrahimi, S., (2022). Adaptation to a heterogeneous patchy environment with nonlocal dispersion, Annales de l'Institut Henri Poincare (C) Analyse Non Linéaire. DOI: https://doi.org/10.4171/AIHPC/59
  34. Louvet, A., (2022). Extinction threshold and large population limit of a plant metapopulation model with recurrent extinction events and a seed bank component. Theoretical Population Biology, 145. DOI : https://doi.org/10.1016/j.tpb.2022.02.003
  35. Mirrahimi, S. and Dekens, L., (2022). Dynamics of Dirac concentrations in the evolution of quantitative alleles with sexual reproduction, Nonlinearity. DOI: https://doi.org/10.1088/1361-6544/ac91bb.
  36. Maïda, M., Nguyen, T. D., Ngoc, T. M. P., Rivoirard, V., Tran, V.C., (2022). Statistical deconvolution of the free Fokker-Planck equation at fixed time, Bernoulli 28(2):771-802. https://doi.org/10.3150/21-BEJ1366
  37. Maisonneuve L., Smadi C., Llaurens V., (2022). Evolutionary origins of sexual dimorphism: Lessons from female-limited mimicry in butterflies, Evolution, 76(10): 2404-2423
  38. Morlon, H., Robin, S., & Hartig, F. (2022). Studying speciation and extinction dynamics from phylogenies: addressing identifiability issues. Trends in Ecology & Evolution.
  39. Ouadah, S., Latouche, P., & Robin, S. (2022). Motif-based tests for bipartite networks. Electronic Journal of Statistics, 16(1), 293-330.
  40. Popovic L., Véber A. (2022). A spatial measure-valued model for chemical reaction networks in heterogeneous systems Ann. Applied Probab.
  41. Sculfort O., Maisonneuve L., Elias M., Aubier T., Llaurens V., (2022). Evolution of conspicuousness in defended species involved in Müllerian mimicry, Oikos, 2022: e08680
  42. Tomasevic M., Bansaye V., Véber A., (2022). Ergodic behaviour of a multi-type growth-fragmentation process modelling the mycelial network of a filamentous fungus. ESAIM: Probability & Statistics, 26 : 397-435. DOI: https://doi.org/10.1051/ps/2022013 
  43. Voinson M., Smadi C., Billiard S., (2022). How does the host community structure affect the epidemiological dynamics of emerging infectious diseases? Ecological Modelling, 472, 110092. DOI : 10.1016/j.ecolmodel.2022.110092

2021

  1. Abraham, R.; Delmas, J.F.; He, H., (2021). Some properties of stationary continuous state branching processes. Stochastic Process. Appl. 141, 309–343. DOI : https://doi.org/10.1016/j.spa.2021.07.011
  2. Abraham, R.; Delmas, J.F., (2021). Exact simulation of the genealogical tree for a stationary branching population and application to the asymptotics of its total length. Adv. in Appl. Probab. 53, no. 2, 537–574. DOI : https://doi.org/10.1017/apr.2020.70
  3. Aubert, J., Schbath, S., & Robin, S. (2021). Model-based biclustering for overdispersed count data with application in microbial ecology. Methods in Ecology and Evolution, 12(6), 1050-1061. DOI : https://doi.org/10.1111/2041-210X.13582
  4. Aubry, P. (2021). On the correct implementation of the Hanurav-Vijayan selection procedure for unequal probability sampling without replacement. Communications in Statistics - Simulation and Computation (2021). DOI : https://doi.org/10.1080/03610918.2021.1891431
  5. Aubry, P. (2021). On the non-recursive implementation of multistage sampling without replacement. MethodsX 8:101553 (2021). DOI : https://doi.org/10.1016/j.mex.2021.101553
  6. Bansaye, V., Pardo, J.C., Smadi, C., (2021). Extinction rate of continuous state branching processes in critical Lévy environments. ESAIM Proba Stat-25, 346-375, (2021). DOI : https://doi.org/10.1051/ps/2021014
  7. Benaïm, M., Champagnat, N., Villemonais, D. (2021). Stochastic approximation of quasi-stationary distributions for diffusion processes in a bounded domain. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, vol. 57, no. 2, pp. 726-739. DOI : https://doi.org/10.1214/20-AIHP1093
  8. Berthelot, G., Saïd, S., Bansaye, V. (2021). A random walk model that accounts for space occupation and movements of a large herbivore. Scientific Reports, 11. DOI : https://doi.org/10.1038/s41598-021-93387-2
  9. Bonnet, C., Gou, P., Girel, S., Bansaye, V., Lacout, C., Bailly, K., Schlagetter, M.H., Lauret E., Méléard, S., Giraudier S., (2021). Multistage hematopoietic stem cell regulation in the mouse: a combined biological and mathematical approach, iScience; 24 (12):103399. Open access. DOI : https://doi.org/10.1016/j.isci.2021.103399
  10. Bonnet, C., Méléard, S., (2021), Large fluctuations in multi-scale modeling for rest erythropoiesis. J.Math. Biol. 82, no. 6, Paper No. 58. DOI : https://doi.org/10.1007/s00285-021-01611-41
  11. Coquille C., Kraut A., Smadi C.,(2021). Stochastic individual-based models with power law mutation rate on a general finite trait space, Electronic Journal of Probability, 26, 123. DOI : https://doi.org/10.1214/21-EJP693
  12. Costa, M., Etchegaray, C., and Mirrahimi, S., (2021). Survival criterion for a population subject to selection and mutations; Application to temporally piecewise constant environments, Nonlinear Analysis: Real World Applications. DOI : https://doi.org/10.1016/j.nonrwa.2020.103239
  13. Champagnat, N., Méléard, S., Tran V.C., (2021). Stochastic analysis of emergence of evolutionary cyclic behavior in population dynamics with transfer, Annals of Applied Probability 31, no. 4, 1820-1867. DOI : https://doi.org/10.1214/20-AAP1635
  14. Champagnat, N., Villemonais, D. Lyapunov (2021). Criteria for uniform convergence of conditional distributions of absorbed Markov processes. Stochastic Processes and their Applications, vol. 135, pp. 51-74. DOI : https://doi.org/10.1016/j.spa.2020.12.005
  15. Chiquet, J., Mariadassou, M., & Robin, S. (2021). The Poisson-lognormal model as a versatile framework for the joint analysis of species abundances. Frontiers in Ecology and Evolution, 9, 188. DOI : https://doi.org/10.3389/fevo.2021.588292
  16. Coron, C., Costa, M., Laroche, F., Leman, H., and Smadi, C., (2021). Emergence of homogamy in a two-loci stochastic population model, ALEA, Lat. Am. J. Probab. Math. Stat., 18:469-508, DOI : https://doi.org/10.30757/ALEA.v18-21
  17. Coste, C. F.D.; Bienvenu, F.; Ronget, V.; Ramirez-Loza, J.P.; Cubaynes, S.; Pavard, S.; (2021). The kinship matrix: inferring the kinship structure of a population from its demography, Ecology Letters. DOI : https://doi.org/10.1111/ele.13854
  18. Engen, S.; Grøtan, V.; Sæther, B.E.; Coste, C.F.D.; (2021). An evolutionary and ecological community model for distribution of phenotypes and abundances among competing species. The American Naturalist. DOI : https://doi.org/10.1086/714529
  19. Facon, B., Hafsi, A., Charlery, M., Robin, S., Massol, F., Dubart, M., ... & Ravigné, V. (2021). Joint species distributions reveal the combined effects of host plants, abiotic factors and species competition as drivers of species abundances in fruit flies. bioRxiv, 2020-12. DOI : https://doi.org/10.1111/ele.13825
  20. Figueroa Iglesias, S., and Mirrahimi, S., (2021). Selection and mutation in a shifting and fluctuating environment, Comm. Math. Sci. DOI : https://dx.doi.org/10.4310/CMS.2021.v19.n7.a1
  21. Forien, R., Pang, G., et Pardoux, E., (2021). Estimating the state of the Covid-19 epidemic in France using a non-Markovian model, Royal Society Open Science 8: 202327. DOI : https://doi.org/10.1098/rsos.202327
  22. Forien, R., Pang, G., et Pardoux, E., (2021). Epidemic models with varying infectivity, SIAM J. Applied Math. 81, pp. 1893-1930. DOI : https://doi.org/10.1137/20M1353976
  23. Fouqueau L. & Roze D., (2021). The evolution of sex along an environmental gradient. Evolution 75:1334-1347. DOI : https://doi.org/10.1111/evo.14237
  24. Fritsch, C., Champagnat, N., Billiard, S. (2021). Identifying conversion efficiency as a key mechanism underlying food webs evolution: A step forward, or backward? OIKOS vol. 130, no. 6, pp. 904-930. DOI : https://doi.org/10.1111/oik.07421
  25. Goncalves, B., Huillet, T., (2021). Keeping random walks safe from extinction and overpopulation in the presence of life-taking disasters. Math. Pop. Studies DOI : https://doi.org/10.1080/08898480.2021.1976476
  26. Goncalves, B., Huillet, T., (2021). A generating function approach to Markov chains undergoing binomial catastrophes. J. Stat. Mech. 033402. DOI : http://dx.doi.org/10.1088/1742-5468/abdfcb
  27. Graham C. (2021). Regenerative properties of the linear Hawkes process with unbounded memory. Annals of Applied Probability. 31 (6) 2844–2863. DOI : https://doi.org/10.1214/21-AAP1664
  28. Hairer, M., et Pardoux E., (2021). Fluctuations around a homogenized semilinear random PDE. Archive for Rational Mechanics and Analysis 239, pp. 151–-217. DOI : https://doi.org/10.1007/s00205-020-01574-8
  29. Huillet, T., Martinez, S., (2021). Revisiting John Lamperti's maximal branching process. Stochastics An International Journal of Probability and Stochastic Processes DOI : http://dx.doi.org/10.1080/17442508.2021.1935949
  30. Jenouvrier, S.; Long, M.C.; Coste, C. F.D.; Holland, M.; Gamelon, M.; Yoccoz, N. G; Sæther, B.E.; (2021). Detecting climate signals in populations across life histories. Global change biology. DOI : https://doi.org/10.1111/gcb.16041
  31. Lepers C., Billiard S., Porte M., Méléard S., Tran V.C., (2021). Inference with selection, varying population size and evolving population structure: Application of ABC to a forward-backward coalescent process with interactions Heredity 126, 335-350. DOI : https://doi.org/10.1038/s41437-020-00381-x
  32. Louvet, A., Machon, N., Mihoub, J. B., Robert, (2021). A. Detecting seed bank influence on plant metapopulation dynamics. Methods in Ecology and Evolution 12(4), 655-664. DOI : https://doi.org/10.1111/2041-210X.13547
  33. Marguet A., Smadi C. (2021); Long time behaviour of continuous-state nonlinear branching processes with catastrophes. Electronic Journal of Probability 26, 1-32. DOI : https://doi.org/10.1214/21-EJP664
  34. Maisonneuve L., Chouteau M., Joron M., Llaurens V. (2021). Evolution and genetic architecture of disassortative mating at a locus under heterozygote advantage. Evolution 75 (1), 149-165. DOI : https://doi.org/10.1111/evo.14129
  35. Maisonneuve L., Beneteau T., Joron M., Smadi C., and Llaurens V. (2021). When do opposites attract? A model uncovering the evolution of disassortative mating. The American Naturalist 2021 198:5, 625-64. DOI : https://doi.org/10.1086/716509
  36. Pardoux, E. (2021)., Stochastic Partial Differential Equations. An Introduction. SpringerBriefs in Mathematics. Springer.
  37. Pavard, S.; Coste, C. F.D.; (2021). Evolutionary demographic models reveal the strength of purifying selection on susceptibility alleles to late-onset diseases. Nature ecology & evolution. page DOI : https://doi.org/10.1038/s41559-020-01355-2
  38. Robin F., Van Gorp A., Véber A., (2021). The role of mode switching in a population of actin polymers with constraints. J. Math. Biol. 82: 11. DOI : https://doi.org/10.1007/s00285-021-01551-z
  39. Roze D. (2021). A simple expression for the strength of selection on recombination generated by interference among mutations. Proceedings of the National Academy of Sciences of the USA 118 (19) e2022805118 DOI : https://doi.org/10.1073/pnas.2022805118
  40. Smadi C., Vatutin V.A., (2021). Critical branching processes in random environment with immigration: survival of a single family, Extremes 24. DOI : https://doi.org/10.1007/s10687-021-00413-7
  41. Tomasevic M. (2021) A new McKean-Vlasov stochastic interpretation of the parabolic-parabolic Keller-Segel model: The two-dimensional case. Ann. Appl. Probab. 31 (1). DOI : https://doi.org/10.1214/20-AAP1594
  42. Tran V.C, Vo T.P.T., (2021). Estimation of dense stochastic block models visited by random walks. Electronic Journal of Statistics 15(2), 5855-5887. DOI : https://doi.org/10.1214/21-EJS1899

2020

  1. Abs E., Leman H., Ferrière R. A multi-scale eco-evolutionary model of cooperation reveals how microbial adaptation influences soil decomposition. Communications Biology 3, 520 (2020). DOI : https://doi.org/10.1038/s42003-020-01198-4
  2. Bansaye V. , Bitseki Penda V. A Phase Transition for Large Values of Bifurcating Autoregressive Models. Journal of Theoretical Probability. DOI : https://doi.org/10.1007/s10959-020-01033-w
  3. Barthe M., Tchouanti-Fotso J., Gomes P., Bideaux C., Lestrade D., Graham C., Steyer J.P., Méléard S., Harmand J., Gorret N., Cocaign-Bousquet M., Enjalbert B., Availability of the molecular switch XylR controls phenotypic heterogeneity and lag duration during Escherichia coli adaptation from glucose to xylose. mBio 11 (6) e02938-20; DOI: https://doi.org/10.1128/mBio.02938-20
  4. Berardo C., Geritz S., Gyllenberg M., Raoul, G. Interactions between different predator–prey states: a method for the derivation of the functional and numerical response. Journal of mathematical biology, 80, 2431-2468 (2020). DOI : https://doi.org/10.1007/s00285-020-01500-2
  5. Billiard S., Smadi C., Stochastic dynamics of three competing clones: Conditions and times for invasion, coexistence and fixation , The American Naturalist. DOI : https://doi.org/10.1086/707017
  6. Calvez V., Crevat J., Dekens L., Fabrèges B., Kuczma F., Lavigne F., Raoul G. Influence of the mode of reproduction on dispersal evolution during species invasion. ESAIM: Proceedings and Surveys, 67, 120-134 (2020). DOI : https://doi.org/10.1051/proc/202067008
  7. Calvez V., Figueroa Iglesias S., Hivert H., Méléard S., Melnykova A., Nordmann A. Horizontal gene transfer: numerical comparison between stochastic and deterministic approaches, ESAIM Proceedings (CEMRACS 2018)(2020). DOI : https://doi.org/10.1051/proc/202067009
  8. Champagnat N., Villemonais D. Practical criteria for R-positive recurrence of unbounded semigroups, Electronic Communications in Probability 25 (6), 11-11 (2020). DOI : https://doi.org/10.1214/20-ECP288
  9. Chazottes J.-R., Collet P., Martínez S., Méléard S. Quasi-stationary distributions and resilience: what to get from a sample ? Journal de l'École polytechnique — Mathématiques, Tome 7, 943-980 (2020). DOI : https://doi.org/10.5802/jep.132
  10. Coron C., Costa M., Laroche F., Leman H., Smadi C. Emergence of homogamy in a two-loci stochastic population model, ALEA.
  11. Costa M., Etchegaray C., Mirrahimi S. Survival criterion for a population subject to selection and mutations; Application to temporally piecewise constant environments. Nonlinear Analysis: Real Worlds Applications . DOI : https://doi.org/10.1016/j.nonrwa.2020.103239
  12. Costa M., Graham C., Marsalle L., Tran V.C., Renewal in Hawkes processes with self-excitation and inhibition. Advances in Applied Probability 52 (3), 879-915 (2020). DOI : https://doi.org/10.1017/apr.2020.19
  13. Degond P., Herda M., Mirrahimi S., A Fokker-Planck approach to the study of robustness in gene expression, Mathematical Biosciences and Engineering 17 (6), 6459-6486 (2020). DOI : https://doi.org/10.3934/mbe.2020338.
  14. Diabaté M., Coquille L., Samson A., Parameter estimation and treatment optimization in a stochastic model for immunotherapy of cancer, Journal of Theoretical Biology (2020). DOI : https://doi.org/10.1016/j.jtbi.2020.110359
  15. Diekmann O., Gyllenberg M., Metz J.A.J. Finite dimensional state representation of physiologically structured populations. Journal of Mathematical Biology 80 (1-2): 205-273 (2020). DOI : https://doi.org/10.1007/s00285-019-01454-0
  16. Diekmann O., Gyllenberg M., Metz J.A.J. Correction to: Finite dimensional state representation of physiologically structured populations. Journal of Mathematical Biology 81: 905–906 (2020). DOI : https://doi.org/10.1007s00285-020-01506-w
  17. Diekmann O., Gyllenberg M., Metz J.A.J. On models of physiologically structured populations and their reduction to ordinary differential equations. Journal of Mathematical Biology 80 (1-2): 189-204 (2020). DOI : https://doi.org/10.1007/s00285-019-01431-7
  18. Dikec J., Olivier A., Bobée C., D'Angelo Y., Catellier R., David P., Filaine F., Herbert S., Lalanne C., Lalucque H., Monasse L., Rieu M., Ruprich-Robert G., Véber A., Chapeland-Leclerc F., Herbert E., Hyphal network whole field imaging allows for accurate estimation of anastomosis rates and branching dynamics of the filamentous fungus Podospora anserina. Scientific Reports 10:3131 (2020). DOI : https://doi.org/10.1038/s41598-020-57808-y
  19. Dong C., Smadi C., Vatutin V.A., Critical branching processes in random environment and Cauchy domain of attraction, ALEA, Latin American Journal of Probability and Mathematical Statistics 17, 877-900 (2020). DOI : https://doi.org/10.30757/ALEA.v17-34
  20. Etheridge A., Véber A., Yu F., Rescaling limits of the spatial Lambda-Fleming-Viot process with selection. Electronic Journal of Probability, Institute of Mathematical Statistics (IMS) 25, 1-89 (2020). DOI : https://dx.doi.org/10.1214/20-EJP523
  21. Goncalves B., Huillet T. Scaling features of two special Markov chains involving total disasters. Journal of Statistical Physics 178, pages 499- 531 (2020). DOI : https://doi.org/10.1007/s10955-019-02439-5
  22. Gonzalez Casanova A., Smadi C., Multidimensional Lambda-Wright-Fisher processes with general frequency-dependent selection, Journal of Applied Probability 57 (4), 1162-1197 (2020). DOI : https://doi.org/10.1017/jpr.2020.55
  23. Graham C., Harmand J., Méléard S., Tchouanti J. Bacterial Metabolic Heterogeneity: from Stochastic to Deterministic Models, Mathematical Biosciences and Engineering 17 (5), 5120-5133 (2020). DOI : https://doi.org/10.3934/mbe.2020276
  24. Horton E., Kyprianou A.E., Villemonais D. Stochastic methods for the neutron transport equation I: Linear semigroup asymptotics, Annals of Applied Probability 30 (6), 2573-2612, (2020). DOI : https://doi.org/10.1214/20-AAP1567
  25. Huillet T. On new mechanisms leading to heavy-tailed distributions related to the ones of Yule-Simon. Indian Journal of Pure and Applied Mathematics, 51, pages 321-344, 2020.
  26. Huillet T. On random population growth punctuated by geometric catastrophic events. Contemporary Mathematics, Volume 1 Issue 5, 469, 2020. DOI : https://doi.org/10.37256/cm.152020600
  27. Huillet T. Statistics of branched populations split into different types. Applications and Applied Mathematics, Vol. 15, Issue 2, pp. 764-800, 2020.
  28. Huillet T., Martinez S. Truncation in Duality and Intertwining Kernels. Markov Processes and Related Fields 26, Issue 3, 423-445, 2020. arXiv:1911.01415.
  29. Ito H., Dieckmann U. & Metz J.A.J. Lotka-Volterra approximations for handling trait substitution processes. Journal of Mathematical Biology 80(7): 2141-2226 (2020). DOI : https://doi.org/10.1007/s00285-020-01493-y
  30. Le V., Pardoux E. Extinction time and the total mass of the continuous-state branching process with competition, Stochastics 92, 852—875, 2020. DOI : https://doi.org/10.1080/17442508.2019.1677661
  31. Léculier A., Roquejoffre J.-M., Mirrahimi S. Propagation in a fractional reaction-diffusion equation in a periodically hostile environment, Journal of Dynamics and Differential Equations. DOI : https://doi.org/10.1007/s10884-020-09837-4
  32. Lepers C., Billiard S., Porte M., Méléard S. and Tran V.C. Inference with selection, varying population size and evolving population structure: Application of ABC to a forward-backward coalescent process with interactions, Heredity 126, 335-350 (2020). DOI : https://doi.org/10.1038/s41437-020-00381-x
  33. Mailler C., Villemonais D. Stochastic approximation on noncompact measure spaces and application to measure-valued Pólya processes, Annals of Applied Probability 30 (5), 2393-2438 (2020). DOI : https://doi.org/10.1214/20-AAP1561
  34. Momal R., Robin S., Ambroise C., Tree-based inference of species interaction networks from abundance data, Methods in Ecology and Evolution 11(5), pages 621-632, 2020. DOI: https://doi.org/10.1111/2041-210X.13380
  35. Pardoux E. Deviations from the law of large numbers and extinction of an endemic disease, Mathematical modeling of random and deterministic phenomena, Manou-Abi, S.M., Dabo-Niang, S., Salone, J.J. eds, pp. 3-30, ISTE ad Wiley, 2020. DOI : https://dx.doi.org/10.1002/9781119706922.ch1
  36. Pardoux E. Moderate deviations and Exticntion of an Epidemic, Electronic Journal of Probability, 25, 1-27, 2020. DOI : https://dx.doi.org/10.1214/20-EJP428
  37. Pardoux E. Samegni-Kepgnou, B., Large deviation of the exit measure through a characteristic boundary for a Poisson driven SDE, ESAIM PS, 24, pp. 148-185, 2020. DOI : https://doi.org/10.1051/ps/2019031
  38. Sun Z., Parvinen K., Heino M., Metz J.A.J., De Roos A.M., Dieckmann U. Evolution of reproduction periods in seasonal environments. Am Nat: 196(4): E88-109 (2020). DOI : https://doi.org/10.1086/708274
  39. Villemonais D. Lower Bound for the Coarse Ricci Curvature of Continuous-Time Pure-Jump Processes, Journal of Theoretical Probability 33, 954–991 (2020). DOI : https://doi.org/10.1007/s10959-019-00918-9

2019

  1. Andrade-Restrepo M., Champagnat N., Ferrière R., Local adaptation, dispersal evolution, and the spatial eco-evolutionary dynamics of invasion. Ecology Letters.
  2. Bansaye V., Approximation of stochastic processes by non-expansive flows and coming down from infinity. Ann. Appl. Probab.
  3. Bansaye V., Caballero M.E., Méléard S., Scaling limits of population and evolution processes in random environment. Elect. J. of Probab.
  4. Bansaye V., Cloez B., Gabriel P., Ergodic Behavior of Non-conservative Semigroups via Generalized Doeblin’s Conditions, Acta Applicandae Mathematicae.
  5. Bansaye V., Collet P., Martinez S., Méléard S., San Martin J., Diffusions from infinity. Trans. Amer. Math. Soc.
  6. Barbillon P., Schwaller L., Robin S., et al., Epidemiologic network inference. Statistics and Computing.
  7. Bast J., Jaron K.S., Schuseil D., Roze D., Schwander T., Asexual reproduction reduces transposable element load in experimental yeast populations. eLife.
  8. Becheler A., Coron C., Dupas S., The Quetzal Coalescence template library: a C++ programmers resource for integrating distributional, demographic and coalescent models. Molecular Ecology Resources.
  9. Billiard S., Smadi C., Stochastic dynamics of three competing clones: Conditions and times for invasion, coexistence, and fixation. To appear in The American Naturalist.
  10. Bovier A., Coquille L., Neukirch R., The recovery of a recessive allele in a Mendelian diploid model. Journal of Math. Biol.
  11. Bovier A., Coquille L., Smadi S., Crossing a fitness valley as a metastable transition in a stochastic population model. Annals of Applied Probability.
  12. Britton T., Pardoux E., Tran V.C., Stochastic Epidemic Models with Inference. Part 3: Stochastic epidemics in a heterogeneous community. Part 4: Statistical inference for epidemic processes in a homogeneous community (with Catherine Larédo) Lecture Notes in Mathematics, Mathematical Biosciences Subseries, Springer
  13. Brunetti I., Tidall M., Couvet D., Relationship between Biodiversity and Agricultural Production. Natural Resource Modeling.
  14. Champagnat N., Henry B., A probabilistic approach to Dirac concentration in nonlocal models of adaptation with several resources. The Annals of Applied Probability.
  15. Chazottes J.R., Collet P., Méléard S., On time scales and quasi-stationary distributions for multitype birth-and-death processes. Annales de l’Institut Henri Poincaré - Probabilités et Statistiques.
  16. Chiquet J., Mariadassou M., Robin S., Variational Inference of Sparse Network from Count Data. Proceedings of the 36 th International Conference on Machine Learning
  17. Cloez B., Limit theorems for some branching measure-valued processes. To appear inn Advances in Applied Probability.
  18. Cordonnier T., Smadi C., Kunstler G., Courbaud B., Asymmetric competition, ontogenetic growth and size inequality drive the difference in productivity between two-strata and one-stratum forest stands. Theoretical Population Biology.
  19. Coron C., Méléard S., Villemonais D., Impact of demography on extinction/fixation events. J. of Mathematical Biology.
  20. Devaux C., Porcher E., Lande R., Mating systems and avoidance of inbreeding depression as evolutionary drivers of pollen limitation in animal-pollinated self-compatible plants. Annals of Botany.
  21. Diekmann O., Gyllenberg M., Metz J.A.J., Finite Dimensional State Representation of Linear and Nonlinear Delay Systems. J Dyn Diff Equat.
  22. Goncalves B., Huillet T., Scaling features of two special Markov chains involving total disasters. Published online first J. Stat. Phys.
  23. Hoffmann M., Marguet A., Statistical estimation in a randomly structured population. Stochastic Processes and their Applications.
  24. Huillet T., Partitioning problems arising from independent shifted-geometric and exponential samples with unequal intensities. International Journal of Statistics and Probability.
  25. Huillet T., Martinez S., Regenerative mutation processes related to the selfdecomposability of Sibuya distributions. Probability in the Engineering and Informational Sciences.
  26. Huillet T., The height of the latest common ancestor of two randomly chosen leaves from a (sub-)critical Galton-Watson tree. Advances in Applied Mathematics.
  27. Lavallée F., Smadi C., Alvarez I., Reineking B., Martin F-M., Dommanget F., Martin S., A stochastic individual based model for the growth of a stand of Japanese knotweed including mowing as a management technique. Ecological Modelling.
  28. Marguet A., A law of large numbers for branching Markov processes by the ergodicity of ancestral lineages. ESAIM: Probability and Statistics.
  29. Marguet A., Uniform sampling in a structured branching population. Bernoulli.
  30. Marguet A., Lavielle M., Cinquemani E., Inheritance and variability of kinetic gene expression parameters in microbial cells: Modelling and inference from lineage tree data. Bioinformatics.
  31. Martin G., Devictor V., Motard E., Machon N., Porcher E., Short-term climate-induced change in French plant communities. Biology Letters.
  32. Martin G., Fontaine C., Accatino F., Porcher E., New indices for rapid assessment of pollination services based on crop yield data : France as a case study. Ecological Indicators.
  33. Méléard S., Réra M., Roget T., The b-d model of ageing: from individual-based dynamics to evolutive differential inclusions. J. Maths Biology.
  34. Mirrahimi S., Singular limits for models of selection and mutations with heavy-tailed mutation distribution. J. Math. Pures Appl.
  35. Mirrahimi S., Gandon S., Evolution of specialization in heterogeneous environments: equilibrium between selection, mutation and migration. Genetics.
  36. Palacios J.A., Véber A., Cappello L., Wang Z., Wakeley J., Ramachandran S., Bayesian estimation of population size changes by sampling Tajima's trees. Genetics.

2018

  1. Abu Awad D., Coron C., Effects of demographic stochasticity and life-history strategies on times and probabilities to fixation Heredity (Edinb). 2018 Oct;121(4):374-386
  2. Bansaye V., Ancestral lineage and limit theorems for branching Markov chains. Journal of Theoretical Probability, march 2018.
  3. Bansaye V., Camanes A., Queueing for an infinite bus line and aging branching process. Queueing Syst. 88, no. 1-2, 99–138, (2018)
  4. Bansaye V., Collet P., Martinez S., Méléard S. , San Martin J., Diffusions from infinity, To appear in Transactions of the AMS. (2018 or 2019)
  5. Billiard S., Alvergne A., Stochasticity in cultural evolution: a revolution yet to happen, History and Philosophy of the Life Sciences 40:9 (2018)
  6. Billiard S., Bansaye V., Chazottes J.R., Rejuvenating functional responses with renewal theory. Journal Royal Society Interface. 2018 Sep;15(146).
  7. Billiard S., Collet P., Ferrière R., Méléard S., Tran V.C., Stochastic dynamics for adaptation and evolution of microorganisms, European Congress of Mathematics Berlin 2016, V. Mehrmann and M. Skutella eds, pp. 525–550, EMS Publishing House, (2018) hal
  8. Chazottes J.R., Collet P., Méléard S., On time scales and quasi-stationary distributions for multitype birth-and-death processes, to appear in Ann. Inst. Henri Poincaré. (2018 or 2019)
  9. Collot D., Nidelet T., Ramsayer J., Martin O., Méléard S., Dillmann C., Sicard D., Legrand J., Feedback between environment and traits under selection in a seasonal environment : consequences for experimental evolution, Proceedings of the Royal Society B, Vol. 285, No. 1876, (2018)
  10. Coron C., Costa M., Leman H., Smadi C., A stochastic model for speciation by mating preferences, Journal of Mathematical Biology, 76(6): 1421–1463 (2018). doi
  11. Coron C., Méléard S., Villemonais D., Impact of demography on extinction/fixation events, J. Maths Biol. Online, (2018).
  12. Cousien A., Tran V.C., Deuffic-Burban S., Jauffret-Roustide M., Mabileau G., Dhersin J.S., Yazdanpanah Y., Effectiveness and cost-effectiveness of interventions targeting harm reduction and chronic hepatitis C cascade of care in people who inject drugs: the case of France, Journal of Viral Hepatitis/, Vol. 25, No. 10, 1197-1207 (2018). doi
  13. Delmas J.F., Abraham R., Guo H., Critical multi-type Galton-Watson trees conditioned to be large, Journ. of Theor. Probab., 31(2), 757-788, 2018. pdf
  14. Devaux C., Porcher E., Lande R. Mating systems and avoidance of inbreeding depression as evolutionary drivers of pollen limitation in animal-pollinated self-compatible plants. Annals of Botany, in press. 2018. doi
  15. Diekmann O., Gyllenberg M., Metz J.A.J. Finite Dimensional State Representation of Linear and Nonlinear Delay Systems. J Dyn Diff Equat. 30: 1439-1467. DOI 10.1007/s10884-017-9611-5 (2018)
  16. Dramé I., Pardoux E., Approximation of a generalized CSBP with interaction. Electron. Commun. Probab., 23 , 73, 1-14, 2018.
  17. Dubs F., Vergnes A., Mirlicourtois E., Le Viol I., Kerbiriou C., Goulnik J., Belghali S., Bentze L., Barot S., Porcher E. Positive effects of wheat variety mixtures on aboveground arthropods are weak and variable. Basic and Applied Ecology. 33: 66-78. 2018.
  18. Faggionato A., Gantert N., Salvi M., The velocity of 1D Mott variable range hopping with external field, Annales de l'Institut Henri Poincaré, Vol. 54, no. 3, 1165-1203 (2018)
  19. Figueroa Iglesias S., Mirrahimi S., Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments, SIAM J. Math. Anal., Vol. 50.5, pp. 5537-5568. (2018)
  20. Forien R., Gene flow across geographical barriers — scaling limits of random walks with obstacles Stochastic Processes and their Applications, in press, 2018 doi
  21. Fried G., Villiers A., Porcher E., Assessing non-intended effectsof farming practices on field margin vegetation with a functional approach. Agriculture, Ecosystems and Environment. 261: 33-44. 2018.
  22. Galis F., Metz J.A.J., van Alphen J.J.M., Development and evolutionary constraints in animals. Annu Rev Ecol Evol Syst 49: 499-522. DOI: 10.1146/annurev-ecolsys-110617-062339 (2018)
  23. Hartmann A. K., Huillet T., Large-deviation properties of the extended Moran model Phys. Rev. E. 98, 042416, 2018. arXiv:1710.07504.
  24. Huillet T., Karlin-McGregor mutational occupancy problem revisited. Journal of Statistical Physics, Volume 171, Issue 6, 1136-1149, DOI: 10.1007/s10955-018-2056-3. 2018.
  25. Huillet T., Martinez S., Regenerative mutation processes related to the selfdecomposability of Sibuya distributions. Probability in the Engineering and Informational Sciences, doi.org/10.1017/S0269964818000189. 2018. doi
  26. Johansson J., Brännström Å., Metz J.A.J., Dieckmann U., Twelve fundamental life histories evolving through allocation-dependent fecundity and survival Ecology and Evolution 8: 3172–3186. DOI: 10.1002/ece3.3730 (2018)
  27. Kratz P., Pardoux E. Large deviations for infectious diseases models. Séminaire de Probabilités XLIX, C. Donati-Martin, A. Lejay, A. Rouault eds., Lecture Notes in Math. 2215, pp. 221-327, 2018.
  28. Leman H., A stochastic model for reproductive isolation under asymmetrical mating preferences, Bulletin of mathematical biology, 80(9): 2502–2525 (2018).
  29. Lion S., Metz J.A.J., Beyond R0 maximisation: on pathogen evolution and environmental dimensions Trends in Ecology and Evolution. 33: 33, Issue 6, p458–473. DOI: 10.1016/j.tree.2018.02.004 (2018)
  30. Roget T., On the long-time behaviour of age and trait structured population dynamics, Discrete & Continuous Dynamical Systems - B 2017, 22(11): 1-26 doi
  31. Sainudiin R., Véber A., Full likelihood inference from the site frequency spectrum based on the optimal tree resolution, Theor. Pop. Biol., 124:1-15, (2018). pdf
  32. Salvi M., Simenhaus F., Random walk on a perturbation of the infinitely-fast mixing interchange process, Journal of Statistical Physics, 171(4), 656-678 (2018).
  33. Smadi C., Leman H., Llaurens V., Looking for the right mate in diploid species: how does genetic dominance affect spatial differentiation in a sexual trait?, Journal of Theoretical Biology, 447:154-170, 2018. pdf
  34. Voinson M., Alvergne A., Billiard S., Smadi C., Stochastic dynamics of an epidemic with recurrent spillovers from an endemic reservoir Journal of Theoretical Biology, Vol. 457, pp.37-50, 2018. doi

2017

  1. Abraham R., Bouaziz A., Delmas J.-F., Local limits of Galton-Watson trees conditioned on the number of protected nodes Journal of Applied Probability, Vol. 54(1), pp. 55-65, 2017.
  2. Abu Awad D.,Billiard S., The double edged sword: The demographic con- sequences of the evolution of self-fertilisation Evolution 71:1178- 1190.
  3. Aguilee R., Raoul G., Rousset F., Ronce O., Pollen dispersal slows geographical range shift and accelerates ecological niche shift under climate change. Proc. Natl. Acad. Sci. U.S.A. 113(39), 5741-5748 (2016).
  4. Alfaro M., Berestycki H., Raoul G., The effect of climate shift on a species submitted to dispersion, evolution, growth and nonlocal competition. SIAM J. Math. Anal., 49(1), 562–596 (2017)..
  5. Baar M., Bovier A., Champagnat N. From stochastic, individual-based models to the canonical equation of adaptive dynamics - In one step. The Annals of Applied Probability, 27, no. 2, 1093-1170 (2017).
  6. Bansaye V., Kurtz T.G., Simatos F., Tightness for processes with fixed points of discontinuities and applications in varying environment, Electronic Com. Probab. Vol. 21, 2016, paper no. 81..
  7. Bansaye V., Camanes A., Aging branching process and queuing for an infinite bus line. To appear in Queuing Syst. and Alg. Pdf..
  8. Bansaye V., Ancestral lineages and limit theorems for branching Markov chains.To appear in Journal of Theoretical Probability. Pdf.
  9. Barton N., Etheridge A. et Véber A. The infinitesimal model: definition, derivation and implications .Theor. Pop. Biol., 118:50-73, (2017).
  10. Billiard S., Collet P., Ferrière R., Méléard S., Tran V.C., Stochastic dynamics for adaptation and evolution of microorganisms. Journal of the European Mathematical Society/, special issue for the Proceedings ECM2016, accepted (2017).
  11. Billiard S., Smadi C., The interplay of two mutations in a population of varying size: a stochastic eco-evolutionary model for clonal interference. Stochastic Processes and their Applications, 127(3): 701-748, 2017.
  12. Billiard S. and Alvergne A., Stochasticity in cultural evolution: a revolution yet to be achieved. sous presse à History and Philosophy of the Life Sciences.
  13. Brink-Spalink R., Smadi C., Genealogies of two linked neutral loci after a selective sweep in a large population of varying size. Advances in Applied Probabilities, 49(1): 279-326, 2017.
  14. Campillo F., Champagnat N., Fritsch C., On the variations of the principal eigenvalue with respect to a parameter in growth-fragmentation models. Communication in Mathematical Sciences, Vol. 15, Issue 7, pp. 1801-1819, 2017
  15. Champagnat N., Henry B., Moments of the frequency spectrum of a splitting tree with neutral Poissonian mutations. Electronic Journal of Probability, Vol. 21, paper no. 53, 1-34 (2016)
  16. Clavel J., Morlon H., Accelerated body-size evolution during cold climatic periods in the Cenozoic Proceedings of the National Academy of Sciences 114: 4183-4188 (2017)
  17. Cloez B., Fritsch C., Gaussian approximations for chemostat models in finite and infinite dimensions. Journal of Mathematical Biology, Vol. 75, Issue 4, pp. 805-843, 2017.
  18. Coste C.F.D, Austerlitz F., Pavard S., Trait level analysis of multitrait population projection matrices.Theor Popul Biol. 2017 Aug;116:47-58. doi: 10.1016/j.tpb.2017.07.002. Epub 2017 Jul 27.
  19. Diekmann O., Gyllenberg M., Metz J.A.J., Finite Dimensional State Representation of Linear and Nonlinear Delay Systems. J Dyn Diff Equat. DOI 10.1007/s10884-017-9611-5
  20. Drame I., Pardoux E., Sow A.B., Non-binary branching process and non-Markovian exploration process. ESAIM Probab. Stat. 21 (2017), 1–33.
  21. Drury J., Grether G.F., Garland T., Morlon H., An assessment of phylogenetic tools for analyzing the interplay between interspecific interactions and phenotypic evolution Systematic Biology (2017)
  22. Forien R., Penington S., . A Central Limit Theorem for the Spatial Lambda Fleming-Viot Process with Selection. Electronic Journal of Probability 22, no. 5 (2017): 1–68. doi:10.1214/16-EJP20.
  23. Fritsch C., Campillo F., Ovaskainen O., A numerical approach to determine mutant invasion fitness and evolutionary singular strategies. Theoretical Population Biology, Vol.115, pp 89-99, 2017
  24. Grosjean N, Huillet T. Some combinatorial aspects of discrete non-linear population dynamics. Chaos, Solitons and Fractals, 93, 71-79, 2016.
  25. Grosjean N, Huillet T. On the genealogy and coalescence times of Bienaymé-Galton-Watson branching processes. CStochastic Models, August, 2017. doi: 10.1080/15326349.2017.1375958.
  26. Grosjean N, Huillet T. Additional aspects of the generalized linear-fractional branching process. Annals of the Institute of Statistical Mathematics, Volume 69, Issue 5, pp 1075-1097, 2017. DOI: 10.1007/s10463-016-0573-x.
  27. Grosjean N, Huillet T. Wright-Fisher-like models with constant population size on average. International Journal of Biomathematics, Volume: 10, Number: 06, 2017. doi.org/10.1142/S1793524517500784.
  28. Huillet T. On Bagchi-Pal urn models and related Pólya-Friedman ones.J. Stat. Mech. 093211, 2017. doi.org/10.1088/1742-5468/aa8c2b.
  29. Huillet T. Stochastic species abundance models involving special copulas.Physica A. Volume 490, 77-91, 2018. doi.org/10.1016/j.physa.2017.08.021
  30. Huillet T. Random evolutionary dynamics driven by fitness and house-of-cards mutations. Sampling formulae.Journal of Statistical Physics, Volume 168, Issue 1, 15-42, 2017.
  31. Huillet T., Martinez M., Möhle M. On polymorphism for discrete evolutionary dynamics driven either by selection or segregation distortion. to appear in: Computational and Applied Mathematics.
  32. Khalifa O., Balandrauid N., Lambert N., Auger I., Roudier J., Sénéchal A., Geneviève D., Picard C., Lefranc G., Touitou I., M'Madi Mrenda B., Benedito C., Pardoux E., Gagez A.-L., Pers Y.-M., Jorgensen C., Mahjoub T., Apparailly F., TMEM187-IRAK1 Polymorphisms Associated with Rheumatoid Arthritis Susceptibility in Tunisian and French Female Populations: Influence of Geographic Origin, Journal of Immunology Research, 2017, Article ID 4915950, 12 pages, 2017.
  33. Manceau M., Lambert A., Morlon H., A unifying comparative phylogenetic framework including traits coevolving across interacting lineages Systematic Biology 66: 551-568 (2017)
  34. Marguet A., Uniform sampling in a structured branching population. Bernoulli, en révision (2016)
  35. Méléard S., Modélisation aléatoire de la biodiversité : de l’importance des paramètres d’échelle, Gazette de la SMF, 2017.
  36. Mirrahimi S., A Hamilton-Jacobi approach to characterize the evolutionary equilibria in heterogeneous environments, Mathematical Models and Methods in Applied Sciences, Vol. 27.13 (2017), pp. 2425-2460
  37. Nassar E., Pardoux E. On the large-time behaviour of the solution of a stochastic differential equation driven by a Poisson point process. Adv. in Appl. Probab. 49 (2017), no. 2, 344–367.
  38. Pardoux E., Samegni-Kepgnou B., Large deviation principle for epidemic models. J. Appl. Probab. 54 (2017), no. 3, 905–920.
  39. Sanchez-Reyes L., Morlon H., Magallon S., Uncovering higher-taxon diversification dynamics from clade age and species-richness data Systematic Biology 66: 367-378 (2017)
  40. Smadi C., The effect of recurrent mutations on genetic diversity in a large population of varying size. Acta Applicandae Mathematicae, 149(1): 11-51, 2017 .

2016

  1. Abu awad D., Billiard S., Tran V.C., Perenniality induces high inbreeding depression in self-fertilising species species. Theoretical Population Biology, (Déc. 2016).
  2. Bansaye V., Méléard S., Richard M. Speed of coming down from infinity for birth and death processes.Adv. in Appl. Probab. 48 (2016), no. 4, 1183–1210., (2016).
  3. Bansaye V., Vatutin V., On the survival of a class of subcritical branching processes in random environment. Bernoulli, (2016).
  4. Barton N, Etheridge A, Kelleher J et Véber A. Spread of pedigree versus genetic ancestry in spatially distributed populations. Theor. Pop. Biol. 108:1-12, (2016).
  5. Billiard S., Collet P., Ferrière R., Méléard S., Tran V.C. The effect of competition and horizontal trait hesitance on invasion, fixation and polymorphism. J. Theoret. Biol. 411 (2016), 48–58.
  6. Bi H., Delmas J-F., Total length of the genealogical tree for quadratic stationary continuous-state branching processes, Ann. Inst. H. Poincaré, Vol. 52(3), pp. 1321-1350, 2016.
  7. Brink-Spalink R., Smadi C., Genealogies of two linked neutral loci after a selective sweep in a large population of varying size. À paraître dans Advances in Applied Probability.
  8. Calenge C., Albaret M., Léger F., Vandel J.-M., Chadoeuf J. , Giraud C., Huet S., Julliard R., Monestiez P., Piffady J. , Pinaud D., Ruette S., Premières cartes d'abondance relative de six mustélidés en France. Modélisation des données collectées dans les « carnets de bord petits carnivores » de l'ONCFS. Faune Sauvage, (130): 17, (2016).
  9. Calsina A., Cuadrado S., Desvillettes L., Raoul G., Asymptotic profile in selection-mutation equations: Gauss versus Cauchy distributions, Journal of Mathematical Analysis and Applications 444(2), 1515--1541 (2016).
  10. Campillo, F., Champagnat, N., Fritsch, C.: Links between deterministic and stochastic approaches for invasion in growth-fragmentation-death models. Journal of Mathematical Biology, Vol. 73, Issue 6, pp. 1781-1821, 2016 , (2016).
  11. Champagnat, N., Henry, B.: Moments of the frequency spectrum of a splitting tree with neutral Poissonian mutations. Electronic Journal of Probability, (2016).
  12. Chantepie, S., Teplitsky, C., Pavard, S., Sarrazin, F., Descaves, B., Lecuyer, P. & Robert, A.: Age-related variation and temporal patterns in the survival of a long-lived scavenger. Oikos 125: 167–178. doi:10.1111/oik.02216 , (2016).
  13. Chazottes J.R., Collet P., Méléard S. Sharp asymptotics for the quasi-stationary distribution of birth-and-death processes, Probab. Theory Related Fields 164, no. 1-2, 285–332, (2016).
  14. Costa M., A piecewise deterministic model for prey-predator communities. À paraître dans Annals of Applied Probability.
  15. Costa M., Hauzy C., Loeuille N., Méléard S. Stochastic eco-evolutionary model of a prey-predator community. Journal of Mathematical Biology, 72(3), 573--622, (2016).
  16. Cousien A.,Tran V.C., Deuffic-Burban S., Jauffret-Roustide M., Dhersin J.-S., Yadanpanah Y., Hepatitis C treatment as prevention of viral transmission and liver-related morbidity in persons who inject drugs Hepatology (to appear), DOI:10.1002/hep.28227.
  17. Desquilbert M., Dorin B., Couvet D.: Land Sharing vs Land Sparing to Conserve Biodiversity: How Agricultural Markets Make the Difference. Environ. Model. Asses., in press , (2016).
  18. Drury J., Clavel J., Manceau M., Morlon H., Estimating the effect of competition on trait evolution using maximum likelihood inference Systematic Biology 65: 700-710 (2016)
  19. Gandon S., Mirrahimi S., A Hamilton-Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations, Comptes Rendus Mathematique, Vol. 355.2, (2016), pp. 155-160.
  20. Geritz S.A.H., Metz J.A.J., Rueffler C., Mutual invadability near evolutionarily singular strategies for multivariate traits, with special reference to the strongly convergence stable case.J Math Biol. 72: 1081-1099 (online first in 2015). DOI 10.1007/s00285-015-0944-6.
  21. Giraud C., Roueff F., Sanchez-Perez A., Aggregation of predictors for non stationary sub-linear processes and online adaptive forecasting of time varying autoregressive processes. Annals of Statistics 2015, Vol. 43, No. 6, 2412-2450.
  22. Griette Q., Raoul G., Existence and qualitative properties of travelling waves for an epidemiological model with mutations, Journal of Differential Equations 260, 7115--7151 (2016).
  23. Grosjean N., Huillet T., On simple age-structured population models. À paraître (d'abord en ligne) dans Applied Mathematical Modelling, (2016).
  24. Grosjean N., Huillet T., Deterministic versus stochastic aspects of superexponential population growth models. Physica A, 455, 27-37, (2016).
  25. Grosjean N., Huillet T., On a coalescence process and its branching genealogy. Journal of Applied probability 53.4, (Déc. 2016).
  26. Grosjean N., Huillet T., Rollet G., On discrete evolutionary dynamics driven by quadratic interactions. À paraître (d'abord en ligne) dans Theory in Biosciences, (2016). DOI: 10.1007/s12064-016-0232-z
  27. Huillet T., On Mittag-Leffler distributions and related stochastic processes. Journal of Comput. and Appl. Math.,Volume 296, Pages 181-211, (Avril 2016).
  28. Huillet T., Random walk Green kernels in the neutral Moran model conditioned on survivors at a random time to origin. Mathematical Population Studies, no 23, Issue 3, pp. 164-200, (2016).
  29. Le Cœur, C., Chantepie, S., Pisanu, B., Chapuis, J.L. & Robert, A.: Inter-annual and inter-individual variations in survival exhibit strong seasonality in a hibernating rodent. Oecologia 181: 795. doi:10.1007/s00442-016-3597-2 , (2016).
  30. Legrand J., Bolotin-Fukuhara M., Bourgais A., Fairhead C., Sicard D., Life-history strategies and carbon metabolism gene dosage in the Nakaseomyces yeasts. FEMS Yeast Res, 16 (2), (2016)
  31. Leman H., Convergence of an infinite dimensional stochastic process to a spatially structured trait substitution sequence. Stochastics and Partial Differential Equations: Analysis and Computations:1-36, (2016).
  32. Lewitus E., Morlon H., Characterizing and comparing phylogenies from their Laplacian spectrum Systematic Biology 65: 495-507 (2016)
  33. Lewitus E., Morlon H., Natural constraints to species diversification PloS Biology 14(8): e1002532 (2016)
  34. Lhomme E., Urien C., Legrand J., Dousset X., Onno B., Sicard D., Sourdough microbial community dynamics: An analysis during French organic bread-making processes. Food Microbiol, 53 (Pt A) 41-50, (2016).
  35. Mazzucco R., Dieckmann U., Metz J.A.J., Epidemiological, evolutionary, and economic determinants of eradication tails J Theor Biol 405: 58-65, http://dx.doi.org/10.1016/j.jtbi.2016.03.019
  36. Metz J.A.J., Geritz S.A.H. , Frequency dependence 3.0: an attempt at codifying the evolutionary ecology perspective. J Math Biol 72: 1011-1037. DOI 10.1007/s00285-015-0956-2, (2016).
  37. Metz J.A.J, Stanková K., Johansson J., The adaptive dynamics of life histories: from fitness-returns to selection gradients and Pontryagin’s maximum principle. J Math Biol 72: 1125–1152 (online first in 2015) DOI 10.1007/s00285-015-0938-4
  38. Mirrahimi S., Roquejoffre J.-M., A class of Hamilton-Jacobi equations with constraint: uniqueness and constructive approach, Journal of differential equations, Vol. 250.5 (2016), pp. 4717--4738.
  39. Missa O., Dytham C., Morlon H., Understanding how biodiversity unfolds through time under neutral theory Philosophical Transaction Royal Society B 371: 20150226 (2016)
  40. Moen D.S., Morlon H., Wiens J.J., Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs Systematic Biology 65: 146-160 (201)6
  41. Morlon H., Lewitus E., Condamine F.L., Manceau M., Clavel J., Drury J., RPANDA: an R package for macroevolutionary analyses on phylogenetic trees Methods in Ecology & Evolution (2016)
  42. Palau S., Pardo J.C., Smadi C., Asymptotic behaviour of exponential functionals of Lévy processes with applications to random processes in random environment. ALEA, Lat. Am. J. Probab. Math. Stat., 13, 1235–1258, 2016
  43. Pardoux E., Probabilistic models of population evolution. Scaling limits, genealogies and interactions. Mathematical Biosciences Institute Lecture Series. Stochastics in Biological Systems, 1.6. Springer, [Cham]; MBI Mathematical Biosciences Institute, Ohio State University, Columbus, OH, 2016. viii+125 pp. ISBN: 978-3-319-30326-0; 978-3-319-30328-4
  44. Pavoine S.: A guide through a family of phylogenetic dissimilarity measures among sites. Oikos, In press, (2016).
  45. Pavoine S., Marcon E., Ricotta C.:"Equivalent numbers" for species, phylogenetic, or functional diversity in a nested hierarchy of multiple scales. Methods in Ecology and Evolution. In press. (2016).
  46. Porcher E., Lande R.: Inbreeding depression under mixed outcrossing, self-fertilization and sib-mating. BMC Evolutionary Biology,16:105, (2016).
  47. Ricotta C., de Bello F., Moretti M., Caccianiga M., Cerabolini B.E., Pavoine S.: Measuring the functional redundancy of biological communities: A quantitative guide. Methods in Ecology and Evolution. In press, (2016).
  48. Ricotta C., Podani J., Pavoine S.: A family of functional dissimilarity measures for presence and absence data. Ecology and Evolution. In press, (2016).
  49. Sainudiin R, Thatte B., Véber A., Ancestries of a recombining diploid population. J. Math. Biol., 72:363-408, (2016).
  50. Sainudiin R. et Véber A., A Beta-splitting model for evolutionary trees. R. Soc. open sci., 3:160016, (2016).
  51. Sainudiin R., Welch D., The Transmission Process: A Combinatorial Stochastic Process on Binary Trees over the Contact Network of Hosts in an Epidemic. Journal of Theoretical Biology, (2016).
  52. Sauve A. M. C., Thébault E., Pocock M. J. O., Fontaine C., How plants combine pollination and herbivory networks: patterns and contribution to community stability. Ecology, (2016).
  53. Smadi C., Vatutin V.A., Reduced two-type decomposable critical branching processes with possibly infinite variance. Markov Processes and Related Fields, 21(2): 311-358, (2016).
  54. Trapman P., Ball F., Dhersin J.-S., Tran V.C., Wallinga J., Britton T., Inferring R 0 in emerging epidemics—the effect of common population structure is small Journal of the Royal Society Interface, Vol. 13, 20160288 (2016).
  55. Veron S., Davies T.J., Cadotte M.W., Clergeau P., Pavoine S.: Predicting loss of evolutionary history: where are we? Biological Reviews In press, (2016).
  56. Veron S., Penone C., Clergeau P., Costa G.C., Oliveira B.F., São-Pedro V.A., Pavoine S.: Integrating data-deficient species in analyses of evolutionary history loss. Ecology and Evolution In press, (2016).
  57. Yguel B., Jactel H., Pearse S.I., Moen D., Winter M., Hortal J., Helmus R.M., Kühn I., Pavoine S., Purschke O., Weiher E., Violle C., Ozinga W., Brändle M., Bartish I.: Prinzing A.: The evolutionary legacy of diversification predicts ecosystem function. American Naturalist. In press, (2016).

2015

  1. Bansaye V., Huang C.: Law of large numbers for some Markov chains along non homogeneous genealogies. ESAIM (2015).
  2. Bansaye V. & Méléard S.: Stochastic Models for Structured Populations - Scaling Limits and Long Time Behavior. Springer MBI Series 1.4 (2015)
  3. Bansaye V., Simatos F.: A sufficient condition for tightness of time-inhomogeneous Markov processes. Electronic Journal of Probability. (2015).
  4. Billiard S., Ferrière R., Méléard S., Tran V.C. : Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks. J. Math. Biol. 71 (2015), no. 5, 1211-1242.
  5. Calenge C. , Chadoeuf J., Giraud C., Huet S., Julliard R., Monestiez P., Piffady J., Pinaud D., Ruette S.: The spatial distribution of Mustelidae in France. PLoS ONE 10(3).
  6. Champagnat, N., Villemonais, D. Exponential convergence to quasi-stationary distribution and Q-process. Probability Theory and Related Fields, online first, paper version to appear (2015).
  7. Chazottes J.R., Collet P. and Méléard S. : Sharp asymptotics for the quasi-stationary distribution of birth-and-death processes. Probab. Theory Related Fields. Online (2015).
  8. Coron C., A model for Mendelian populations demogenetics. ESAIM: Proc. 51:122-132, (2015).
  9. Clémençon S., Cousien A., Dávila Felipe M., & Tran V.C.: On Computer-Intensive Simulation and Estimation Methods for Rare Event Analysis in Epidemic Models. Statistics in Medicine/, Vol. 34, No. 28, 3696-3713 (2015) lien
  10. Clémençon S., De Arazoza H., Rossi F., & Tran V.C.: A statistical network analysis of the HIV/AIDS epidemics in Cuba. Social Network Analysis and Mining, Vol. 5, Article 58 (2015) lien
  11. Condamine, F., Nagalingum, N.S., Marshall, C.R., Morlon, H. Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating BMC Evolutionary Biology 15:65 (2015).
  12. Coron C.: Slow-fast stochastic diffusion dynamics and quasi-stationary distributions for diploid populations. J. Math. Biol. (2016), Volume 72, Issue 1, pp 171-202.
  13. Costa M., Hauzy C., Loeuille N., Méléard S.: Stochastic eco-evolutionary model of a prey-predator community. J. Math. Biol., Online (2015).
  14. Cousien A., Tran V.C., Jauffret-Roustide M., Dhersin J.S., Deuffic-Butban S., Yazdanpanah Y., Dynamic modelling of HCV transmission among drug users: a methodological review. Journal of Viral Hepatitis, Vol. 22, No. 3, 213-229 (2015).
  15. da Silva T., Albertin W., Dillmann C., Bely M., la Guerche S., Giraud C., Huet S., Sicard D., Masneuf-Pomarede I., de Vienne D., Marullo P.: Hybridization within Saccharomyces Genus Results in Homoeostasis and Phenotypic Novelty in Winemaking Conditions. PloS ONE 10(5)
  16. Fontbona J. & Méléard S.: Non local Lotka-Volterra system with cross-diffusion in an heterogeneous medium, J. Math. Biol. 70 (2015), no. 4, 829-854.
  17. Giraud C., Calenge C., Coron, C., Julliard R.: Capitalizing on opportunistic data for monitoring relative species abundances. Biometrics (Published Online Oct 2015)
  18. Lambert, A., Morlon, H., Etienne, R.S. The reconstructed tree in the lineage-based model of protracted speciation Journal of Mathematical Biology 70: 367-397 (2015).
  19. Leman H., Méléard S., Mirrahimi S. : Influence of a spatial structure on the long time behavior of a competitive Lotka-Volterra type system. Disc. Cont. Dyn. Syst. - B. (2015).
  20. Lewitus, E., Morlon, H. Characterizing and comparing phylogenies from their Laplacian spectrum, Systematic Biology, 2015.
  21. Manceau, M., Lambert, A., Morlon, H. Phylogenies support out-of-equilibrium models of biodiversity Ecology Letters 18: 347-356 (2015).
  22. Martin J., Sabatier Q., Gowan T., Giraud C., Gurarie E., Calleson S., Ortega-Ortiz J., Rycyk A., Koslovsky S., : A quantitative framework for investigating risk of deadly collisions between marine wildlife and boats. To appear in Methods in Ecology and Evolution.
  23. Méléard S., Mirrahimi S.:Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity, Comm. Partial Differential Equations 40 (2015), no. 5, 957-993.
  24. Moen, D.S., Morlon, H., Wiens, J.J. Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs. Systematic Biology, (2015).
  25. Morlon, H., O'Connor, T., Bryant, J.A., Charkoudian, L.K., Docherty, K.M., Jones, E., Kembel, S., Green, J.L., Bohannan, B.J.M. The biogeography of putative microbial antibiotic production PloS One 10(6): e0130659 (2015).
  26. Mouquet, N., Lagadeuc, Y., Devictor, V., Doyen, L., Duputié, A., Eveillard, D., Faure, D., Garnier, E., Gimenez, O., Huneman, H., Jabot, F., Jarne, P., Joly, D., Julliard, J., Kéfi, S., Kergoat, G.J., Lavorel S., Le Gall, L., Morlon, H., Pinay, G., Pradel, R., Schurr, F.M., Thuiller, W., Loreau, M. Predictive ecology in a changing world Journal of Applied Ecology 5: 1293-1310, (2015).
  27. Rolland, J., Condamine, F.L., Champak, R.B., Jiguet, F., Morlon, H. Dispersal is a major driver of the latitudinal diversity gradient of Carnivora. Global Ecology and Biogeography 24: 1059-1071 (2015).
  28. Rolland, J., Lavergne, S., Manel, S. (2015). Combining Niche Modelling and Landscape Genetics to Study Local Adaptation: A Novel Approach Illustrated using Alpine Plants. Perspectives in Plant Ecology, Evolution and Systematics. (in press)
  29. Sainudiin R, Thatte B., Véber A. Ancestries of a recombining diploid population. J. Math. Biol., Online First, 2015.
  30. Sauve A., Fontaine C., Thébault E.: Stability of a diamond-shaped module with multiple interaction types. Theoretical Ecology, p.1-11 (2015). lien
  31. Smadi C. : An Eco-Evolutionary approach of Adaptation and Recombination in a large population of varying size. Stochastic Processes and their Applications, 125(5): 2054--2095, (2015), (lien).
  32. Tucker C.M., Cadotte M.W., Carvalho S.B., Davies J., Ferrier S., Fritz S.A., Grenyer R., Helmus M.R., Jin L.S., Mooers A.O., Pavoine S., Purschke O., Redding D.W., Rosauer D.F., Winter M., Mazel F.: A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews. In press. , (2015).
  33. Warren, B.H., Simberloff, D., Ricklefs, R.E., Aguilée , R., Condamine, F.L., Gravel, D., Morlon, H., Mouquet, N., Rosindell, J., Casquet, J., Conti, E., Cornuault, J., Fernández-Palacios, J.M., Hengl, T., Norder, S.J., Rijsdijk, K.F., Sanmartín, I., Strasberg, D., Triantis, K., Valente, L.M., Whittaker, R.J., Gillespie, R.G., Emerson, B.C., Thébaud, C. Islands as model systems in ecology and evolution: prospects fifty years after MacArthur-Wilson Ecology Letters 8: 200-216 (2015).

2014

  1. Abu Awad D., Gallina S., Bonamy C., Billiard S.: The Interaction between Selection, Demography and Selfing and How It Affects Population Viability. PLoS ONE 9(1): e86125 (2014).
  2. Bansaye V., Vatutin V.: Random walk with heavy tail and negative drift conditioned by its minimum and final values. Markov Processes and Related Fields (2014).
  3. Champagnat N., Jabin P.E., Méléard S. : Adaptation in a stochastic multi-resources chemostat model. J. Math. Pures Appl. (9) 101 (2014), no. 6, 755-788.92D25 (37N25 60J75 60J80).
  4. Coron C.: Stochastic modeling of density-dependent diploid populations and extinction vortex. Adv. in Appl. Probab. 46:446--477, (2014).
  5. Etienne R.S., Morlon H., Lambert A. (2014) : Estimating the duration of speciation from phylogenies Evolution 68(8): 2430-2440
  6. Fontbona J., Méléard S. : Non local Lotka-Volterra system with cross-diffusion in an heterogeneous medium, J. Math. Biol.. Online (2014).
  7. Galis F., Carrier D.R., van Alphen J., van der Mije S.D., Van Dooren T.J.M., Metz J.A.J., ten Broek C.M.A. : (2014) Fast running restricts evolutionary change of the vertebral column in mammals. PNAS 111(31): 11401-11406. lien
  8. Gupta A., Metz J.A.J., Tran V.C. (2014) A new proof for the convergence of an individual based model to the trait substitution sequence. Acta Applicanda Mathematicae 121(1): 1-27
  9. Huber B., Le Poul Y., Whibley A., Navarro N., Martin A., Baxter S., Shah AB., Gilles B., Wirth T., McMillan OW., & Joron M.: Conservatism and novelty in the genetic architecture of adaptation in Heliconius butterflies. Heredity (accepted)
  10. Le Poul Y., Whibley A., Chouteau M., Prunier F., Llaurens V., & Joron M.; Evolution of dominance mechanisms at a butterfly mimicry supergene. Nature Communications (in press).
  11. Méléard S., Mirrahimi S. : Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity, A paraître dans Comm. in Part. diff. Equat. (2014).
  12. Mirrahimi S., Perthame B., Wakano J.Y.: Direct competition results from strong competition for limited resource. J. Math. Biol. Online first (2014).
  13. Moen D., Morlon H. : From dinosaurs to modern bird diversity - Extending the time-scale of adaptive radiation PLoS Biology 12(5) (2014): e1001854
  14. Moen D., Morlon H : Why does diversification slow down? Trends in Ecology and Evolution 29: 190-197 (2014)
  15. Morlon H. : Phylogenetic approaches for studying diversification Ecology Letters 17: 508-525 (2014)
  16. Morlon H., Kefi S., Martinez N. : Effects of trophic similarity on community composition Ecology Letters (in press)
  17. Richard M.: Splitting trees with neutral mutations at birth. Stochastic Processes and their Applications, (2014), 124(10), 3206-3230.
  18. Rolland J., Condamine F.L., Jiguet F., and Morlon H.: Faster speciation and reduced extinction in the tropics explain the mammalian latitudinal diversity gradient. PloS Biology I12(1): e1001775.
  19. Rolland J., Jiguet F., Jønsson K.A., Condamine F.L., Morlon H. : Settling down of seasonal migrants promotes bird diversification Proceedings of the Royal Society (2014) B 281: 20140473
  20. Sainudiin R., Stadler T., Véber A.: Finding the best resolution for the Kingman-Tajima coalescent: theory and applications. J. Math. Biol. (2014).
  21. Sauve A., Fontaine C., Thébault E: Structure-stability relationships in networks combining mutualistic and antagonistic interactions. Oikos. (2014).

2013

  1. Bansaye V., Boeinghoff C.: Lower large deviations for supercritical branching processes in random environment. Proceedings of Steklov Institute of Mathematics, 3 (2013).
  2. Bansaye V., Boeinghoff C.: Small positive values for supercritical branching processes in random environment. À paraître dans Ann. Inst. H. Poincaré, (2013).
  3. Bansaye V., Méléard S., Véber A.: Les différentes échelles de temps de l'évolution. MATAPLI. Vol. 100 (2013)
  4. Bansaye V., Pardo Millan J.C., Smadi C.: On the extinction of Continuous State Branching Processes with catastrophes. Electronical Journal of Probability, 106, 31p (2013).
  5. Barton N., Etheridge A., Kelleher J., Véber A.: Genetic hitchhiking in spatially extended populations. Theor. Pop. Biol. Online First (2013)
  6. Barton N., Etheridge A., Kelleher J., Véber A.: Inference in two dimensions: allele frequencies versus lengths of shared sequence blocks. Theor. Pop. Biol. Online First (2013)
  7. Barton N.H., Etheridge A.M., Véber A.: Modelling evolution in a spatial continuum. J. Stat. Mechanics. Vol. P01002 (2013)
  8. Berestycki N., Etheridge A.M., Véber A.: Large scale behaviour of the spatial Lambda-Fleming-Viot process. Ann. Inst. H. Poincaré Probab. Statist. 45: 374-401 (2013)
  9. Blein-Nicolas M. , Albertin W., Valot B., Marullo P., Sicard D., Giraud C., Huet S., Bourgais A., Dillmann C., de Vienne D., Zivy M.: Yeast Proteome Variations Reveal Different Adaptive Responses to Grape Must Fermentation. Mol Biol Evol. 2013 Jun;30(6):1368-83
  10. Collet P., Martinez S., Méléard S., San Martín J: Stochastic models for a chemostat and long time behavior. Adv. Appl. Probab. (2013)
  11. Collet P., Méléard S., Metz J.A.J.: A rigorous model study of adaptive dynamics for Mendelian diploids. J. Math. Biol., 67(3): 569-607. (2013).
  12. Condamine F., Rolland J., Morlon H.: Macroevolutionary perspectives to environmental change. Ecology Letters. Online (2013).
  13. Coron C., Méléard S., Porcher E., Robert A.: Quantifying the mutational meltdown in diploid populations. American Naturalist. 181(5): 623-636 (2013).
  14. de Roos A.M., Metz J.A.J., Persson L.: (2013) Ontogenetic symmetry and asymmetry in energetics. J. Math. Biol. 66(4-5): 889-914 (DOI 10.1007/s00285-012-0583-0)
  15. Delmas J.F. and Hénard O.: A Williams' decomposition for spatially dependent superprocesses. Elect. Journ. of Probab., 18(37): 1-43, (2013) (doi:10.1214/EJP.v18-1801).
  16. Giraud C., Julliard R., Porcher E.: Delimiting synchronous populations from monitoring data. Environmental and Ecological Statistics, Vol. 20 (2013), no 3, pp. 337--352.
  17. Jones R.T., Poul Y., Whibley A., Mérot C., Joron M.: Wing shape variation associated with mimicry in butterflies. Evolution, 67(8), 2323-2334 (2013).
  18. Joost S., Vuilleumier S., Jensen J.D., Schoville S., Leempoel K., Stucki S., Widmer I., Melodelima C., Rolland J., Manel S.: Uncovering the genetic basis of adaptive change: on the intersection of landscape genomics and theoretical population genetics. Molecular Ecology. 22, 3659-3665 (2013).
  19. Lafitte-Godillon P., Raschel K., Tran V.C.: Extinction probabilities for a distylous plant population modeled by an inhomogeneous random walk on the positive quadrant. SIAM Journal on Applied Mathematics (SIAP), 73(2): 700-722 (2013).
  20. Méléard S., Roelly S. : Evolutive two-level population process and large population approximations. Ann. Univ. Buchar. Math. Ser. 4(LXII) (2013), no. 1, 37-70.
  21. Metz J.A.J. (2013) On the concept of individual in ecology and evolution. J Math Biol 66(4-5): 635-647 DOI 10.1007/s00285-012-0610-1
  22. Metz J.A.J., de Kovel C.G.F. (2013) The canonical equation of adaptive dynamics for Mendelian diploids and haplo-diploids. Interface Focus 3: 20130025
  23. Metz J.A.J., Tran V.C.: Daphnias: from the individual based model to the large population equation. Journal of Mathematical Biology, special issue in honor of Odo Diekmann, Vol. 66, No. 4-5, 915-933 (2013).
  24. Mirrahimi S., Perthame B., Wakano J.Y.: Evolution of species trait through resource competition. J. Math. Biol. Online first (2013).
  25. Mirrahimi S., Raoul G.: Population structured by a space variable and a phenotypical trait. Theor. Pop. Biol. 84: 87-103 (2013).
  26. Richard M.: Lévy processes conditioned on having a large height process. Ann. Instit. H. Poincaré, (2013), 49(4),982-1013.
  27. Rueffler C., Metz J.A.J.: (2013) Necessary and sufficient conditions for R0 to be a sum of contributions of fertility loops. J. Math. Biol. 66(4-5): 635-647 DOI 10.1007/s00285-012-0575-0
  28. Rueffler C., Van Dooren T.J.M. & Metz J.A.J. (2013) What life cycle graphs can tell about the evolution of life histories. J. Math. Biol. 66 (1):225-279 DOI 10.1007s00285-012-0509-x
  29. Véber A., Wakolbinger A.: The spatial Lambda-Fleming-Viot process: an event-based construction and a lookdown representation. À paraître dans Ann. Instit. H. Poincaré.

2012

  1. Billiard S., Tran V.C.: A general stochastic model for sporophytic self-incompatibility. J. Math. Biol. 64:163-210 (2012).
  2. Blein-Nicolas M., Xu H., de Vienne D., Giraud C., Huet S., Zivy M.: Including shared peptides for estimating protein abundances: a significant improvement for quantitative proteomics. Proteomics 12(18):2797-2801 (2012).
  3. Bouin E., Calvez V., Meunier N., Mirrahimi S., Perthame B., Raoul G., Voituriez R.: Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration, Comptes rendus Mathematiques 350:761-766 (2012).
  4. Dornelas M., Magurran A., Buckland S.T., Chao A., Chazdon R.L., Colwell R.K., Curtis T., Gaston K.J., Gotelli N.J., Kosnik M., McGill B., McCune J.L., Morlon H., Mumby P.J., Ovreås L., Studeny A., Vellend M.: Quantifying temporal change in biodiversity: challenges and opportunities. Proc. of the Roy. Soc. B. (2012).
  5. Etheridge A.M., Véber A.: The spatial Lambda-Fleming-Viot process on a large torus: genealogies in the presence of recombination. Ann. Appl. Probab. 22:2165-2209 (2012).
  6. Jourdain B., Méléard S., Woyczynski W.: Lévy flights in evolutionary ecology. J. Math. Biol. 65(4):677-707 (2012).
  7. Méléard S., Tran V.C.: Slow and fast scales for superprocess limits of age-structured populations. Stoc. Proc. Appl. 122:250-276 (2012).
  8. Méléard S., Tran V.C.: Nonlinear historical superprocess approximations for population models with past dependence, Electronic Journal of Probability, 17(47):1-32 (2012).
  9. Méléard S., Villemonais D.: Quasi-stationary distributions and population processes. Probab. Surv. 9:340-410 (2012).
  10. Mirrahimi S.: Adaptation and migration of a population between patches, Discrete and Continuous Dynamical System 18(3):753-768 (2012).
  11. Mirrahimi S., Souganidis P.E.: A homogenization approach for the motion of motor proteins. NoDEA 20(1): 129-147 (2012).
  12. Morlon H.: Microbial cooperative warfare. Science 337: 1184-1185 (2012).
  13. Morlon H., Kemps B., Plotkin J.B., Brisson D.: Explosive radiation of a bacterial species group Evolution 66: 2577-2586 (2012).
  14. Pavard S., Branger F.: Effect of maternal and grandmaternal care on population dynamics and human life-history evolution: A matrix projection model. Theoret. Pop. Biol. (2012).

2011

  1. Bansaye V., Boeinghoff C.: Upper large deviations for Branching Processes in Random Environment with heavy tails. Electron. J. Probab. 16:1900-1933 (2011).
  2. Bansaye V., Delmas J.F., Marsalle L., Tran V.C.: Limit theorems for Markov processes indexed by continuous time Galton-Watson trees. Ann. of App. Probab. 21:2263-2314 (2011).
  3. Bansaye V., Dombry C., Mazza C.: Phenotypic diversity and population growth in fluctuating environment: a MBPRE approach. Adv. in Appl. Probab. 43(2):375-398 (2011).
  4. Bansaye V., Tran V.C.: Branching Feller diffusion for cell division with parasite infection. ALEA Lat. Am. J. Probab. Math. Stat. 8:95-127 (2011).
  5. Champagnat N., Méléard, S.: Polymorphic evolution sequence and evolutionary branching. Probab. Theory Related Fields, 151(1):45-94 (2011).
  6. Colle, P., Martinez S., Méléard S., San Martin J.: Quasi-stationarity distributions for structured birth and death process with mutations. Probab. Th. Rel. Fields, 151(1):191-231 (2011).
  7. Decreusefond L., Dhersin J.S., Moyal, P., Tran, V.C.: Large graph limit for a SIR process in random network with heterogeneous connectivity, Ann. of Appl. Probab. 22(2):541-575 (2011).
  8. Fontaine C., Guimarães P.R., Kéfi S., Loeuille N., Memmott J., Van Der Putten W.H., Thébault E.: The ecological and evolutionary implications of merging different types of networks. Ecol. Lett., 14:1170-1181 (2011).
  9. Gyllenberg M., Metz J.A.J., Service R.: When do optimisation arguments make evolutionary sense? Chapitre du livre ''The Mathematics of Darwin's Legacy'', Mathematics and Biosciences in Interaction. J.F. Rodrigues and F. Chalub editors, Birkhäuser Basel, pp. 235-269 (2011).
  10. Huillet T.: On the Karlin-Kimura approaches to the Wright-Fisher diffusion with fluctuating selection. J. Stat. Mech. Th. and Exp., P02016.
  11. Huillet T.: Nonconservative diffusions on [0,1] with killing and branching. Applications to Wright-Fisher models with or without selection. Internat. J. Stoch. Analysis, Article ID 605068.
  12. Huillet T., Martinez S.: Duality and Intertwining for discrete Markov kernels: relations and examples. Adv. Appl. Probab., 43:437-460 (2011).
  13. Huillet T., Moehle M.: On the extended Moran model and its relation to coalescents with multiple collisions. Theor. Pop. Biol., Online first.
  14. Jesse M., Mazucco R., Metz J.A.J., Diekmann U., Heesterbeek J.A.P.: How to calculate a threshold for infectious diseases in a metapopulation. Plos one, 66:e2406 (2011).
  15. Lorz A., Mirrahimi S., Perthame B.: Dirac mass dynamics in multidimensional nonlocal parabolic equations. Comm. in PDEs, 36:1071-1098 (2011).
  16. Méléard S.: Random Modeling of Adaptive Dynamics and Evolutionary Branching. Chapitre du livre ''The Mathematics of Darwin's Legacy'', Mathematics and Biosciences in Interaction. J. F. Rodrigues and F. Chalub editors, Birkhäuser Basel, pp. 175-192 (2011).
  17. Méléard S., Metz J.A.J., Tran V.C.: Limiting Feller diffusions for logistic populations with age-structure, 58th World Statistics Congress of the International Statistical Institute, Dublin Ireland (2011).
  18. Metz J.A.J.: Thoughts on the geometry of meso-evolution: collecting mathematical elements for a postmodern synthesis. In: Chalub, F.A. and Rodrigues, J.F. eds. The Mathematics of Darwin's Legacy. Basel: Birkhauser, pp. 193-231 (2011).
  19. Metz J.A.J., Leimar O.: A simple fitness proxy for ESS calculations in structured populations with continuous traits, with applications to the evolution of haplo-diploids and genetic dimorphisms. J. Biol. Dyn. 5(2):163-190 (2011).
  20. Mirrahimi S., Perthame B., Bouin E., Millien P.: Population formulation of adaptative evolution ; theory and numerics. Chapitre du livre "The Mathematics of Darwin's Legacy?", Mathematics and Biosciences in Interaction. J. F. Rodrigues and F. Chalub editors, Birkhäuser Basel, pp. 159-174 (2011).
  21. Morlon H., Parsons T.L., Plotkin J.: Reconciling molecular phylogenies with the fossil record. PNAS 108:16327-16332 (2011).
  22. Rolland J., Cadotte M.W., Davies J., Devictor, V., Lavergne, S., Mouquet, N., Pavoine, S., Rodrigues, A., Thuiller, W., Turcati, L., Winter, M., Zupan L., Jabot F., Morlon H.: Using phylogenies in conservation: new perspectives Biology Letters 8: 692-694 (2011).
  23. Van den Berg F., Bacaer N., Metz J.A.J., Lannou, C., Van Den Bosch, F.: Periodic host absence can select for higher or lower parasite transmission rates. Evol. Ecol. 25(1):121-137 (2011).
  24. Villemonais D.: Interacting particle systems and Yaglom limit approximation of diffusions with unbounded drift. Electron. J. Probab, 16:1663-1692 (2011).

2010

  1. Barton N.H., Etheridge A.M., Véber A.: A new model for evolution in a spatial continuum. Electron. J. Probab., 15:162-216 (2010).
  2. Cattiaux P., Méléard S.: Competitive or weak cooperative stochastic Lotka-Volterra systems conditioned on non-extinction. J. Math. Biology 6:797-829 (2010).
  3. Diekmann O., Gyllenberg M., Metz J.A.J., Nakaoka, S., De Roos, A.M.: Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example. J. Math Biol. 61:277-318 (2010).
  4. Diekmann O., Metz J.A.J.: How to lift a model for individual behaviour to the population level? Phil Trans. Roy. Soc. London B. 365(1557):3523-3530 (2010).
  5. Fontbona J., Guérin H., Méléard S.: Measurability of optimal transportation and strong coupling of martingale measures. Electron. Commun. Probab. 15:124-133 (2010)

2009

  1. Méléard S.: Introduction to stochastic models for evolution. Markov Process. Related Fields 15 (2009), no. 3, pp.259-264.