Chaire Modélisation Mathématique et Biodiversité

École Polytechnique, Muséum national d'Histoire naturelle
Fondation de l'École Polytechnique
VEOLIA Environnement

Logo du CMAP

Logo du MNHN

Logo du MNHN

Prépublications :

  1. Abu Awad D., Coron C., Effects of demographic stochasticity and life-history strategies on times and probabilities to fixation: an individual-based model. BioRxiv, doi (2017)
  2. Bansaye V.: Approximation of stochastic processes by non-expansive flows and coming down from infinity. submitted, disponible sur arXiv.
  3. Bansaye V., Billiard S., Chazottes J.R., Rejuvenating functional responses with renewal theory,
  4. Bansaye V., Cloez B., Gabriel P., Ergodic behavior of non-conservative semigroups via generalized Doeblin's conditions.
  5. Becheler A., Coron C., Dupas S., Quetzal - an open source C++ template library for coalescence-based environmental demogenetic models inference. BioRxiv, doi (2017)
  6. Benaïm M., Bouguet F., Cloez B., Ergodicity of inhomogeneous Markov chains through asymptotic pseudotrajectories. En révision, (2016).
  7. Benaim M., Cloez B., Panloup F., Stochastic appoximation of quasi-stationary distributions on compact spaces and applications. Preprint, (2016).
  8. Berestycki N., Mouhot C., Raoul G., Existence of self-accelerating fronts for a non-local reaction-diffusion equation. Preprint.
  9. Billiard S., Smadi C., Beyond clonal interference: Scrutinizing the complexity of the dynamics of three competing clones. Preprint, (2016).
  10. Bovier A., Coquille L., Neukirch R., The recovery of a recessive allele in a Mendelian diploid model Arxiv, accepté dans Journal of Math. Biol..
  11. Bunea F., Giraud C, Royer M., Verzelen N., PECOK: a convex optimization approach to variable clustering. Preprint.
  12. Bunea F., Giraud C, Luo X., Community estimation in G-models via CORD. Preprint.
  13. Castellan G., Cousien A.,Tran V.C., Nonparametric adaptive estimation of order 1 Sobol indices in stochastic models, with an application to Epidemiology, Preprint.
  14. Preprint, disponible sur arXiv.
  15. Champagnat, N., Villemonais, D.: Quasi-stationary distribution for multi-dimensional birth and death processes conditioned to survival of all coordinates. Preprint, disponible sur arXiv.
  16. Champagnat, N., Villemonais, D.: Exponential convergence to quasi-stationary distribution for absorbed one-dimensional diffusions with killing. Preprint, disponible sur arXiv.
  17. Champagnat, N., Villemonais, D., Exponential convergence to quasi-stationary distribution for one-dimensional diffusions. Preprint, disponible sur arXiv.
  18. Cloez B., Limit theorems for some branching measure-valued processes, à paraître dans Advances in Applied Probability.
  19. Cloez B., Delplancke C., Intertwinings and Stein’s magic factors for birth-death processes. Preprint, (2016).
  20. Coron C., Méléard S., Villemonais D., Perpetual integrals convergence and extinctions in population dynamics. arXiv:1704.08199.
  21. Costa M., Gadat S., Gonnord P., Risser L., Cytometry inference through adaptive atomic deconvolution. (soumis).
  22. Cousien A., Leclerc P., Morissette C., Bruneau J., Roy E., Tran V.C., Yazdanpanah Y., Cox J., The necessity of a treatment scale-up to impact HCV transmission in in people who inject drugs in Montréal, Canada: a modelling study, Preprint.
  23. Cousien A., Tran V.C., Deuffic-Burban S., Jauffret-Roustide M., Mabileau G., Dhersin J.-S., Yazdanpanah Y., Cost-effectiveness of risk reduction measures and improvements in the cascade of care of chronic Hepatitis C in people who inject drugs in France, Preprint.
  24. Diekmann O., Gyllenberg M., Metz J.A.J., Finite Dimensional State Representation of Linear and Nonlinear Delay Systems. J Dyn Diff Equat. doi
  25. Etheridge A., Véber A., Yu F.: Rescaling limits of the spatial Lambda-Fleming-Viot process with selection. Preprint arXiv 1406.5884.
  26. Fabre C., Méléard S., Porcher E., Robert A.: Evolution of a structured population in a heterogeneous environment. Plos One, en révision.
  27. Forien R., Dispersal heterogeneity in the spatial Lambda-Fleming-Viot process Preprint, disponible sur arXiv.
  28. Forien R., Gene flow accross geographical barriers - scaling limits of random walks with obstacles Preprint, disponible sur arXiv.
  29. Henry, B. CLTs for general branching processes related to splitting trees. Preprint, disponible sur arXiv.
  30. Hoang V.H., Pham Ngoc T.M., Rivoirard V., Tran V.C., Nonparametric estimation of the fragmentation kernel based on a PDE stationary distribution approximation. Preprint (2017).
  31. Le Poul Y.: Variation of genetic dominance on wing colour pattern in the mimic butterfly Heliconius numata. En préparation.
  32. Leman H., A stochastic model for reproductive isolation under asymmetrical mating preferences. Preprint, arXiv:1709.05987, (2017)..
  33. Magal P., Raoul G., Dynamics of a kinetic model for exchanges between cells. Preprint.
  34. Marguet A., A law of large numbers for branching Markov processes by the ergodicity of ancestral lineages. Preprint, (2017)
  35. Raoul G., Macroscopic limit from a structured population model to the Kikrpatrick-Barton model,arXiv:1706.04094.
  36. Smadi C., Leman H., Llaurens V., Assortative mating driving spatial divergence of mating trait in diploid species: how dominance influences population differentiation?. Preprint. (2017)
  37. Villemonais D.: Interacting particle processes and approximation of Markov processes conditioned to not be killed. Prépublication.
  38. Voinson M., Alvergne A., Billiard S., Smadi C., Stochastic dynamics of an epidemics with recurrent spillovers from an endemic reservoir. Preprint. (2017)

Publications:

2017

  1. Abraham R., Bouaziz A., Delmas J.-F., Local limits of Galton-Watson trees conditioned on the number of protected nodes Journal of Applied Probability, Vol. 54(1), pp. 55-65, 2017.
  2. Abu Awad D.,Billiard S., The double edged sword: The demographic con- sequences of the evolution of self-fertilisation Evolution 71:1178- 1190.
  3. Aguilee R., Raoul G., Rousset F., Ronce O., Pollen dispersal slows geographical range shift and accelerates ecological niche shift under climate change. Proc. Natl. Acad. Sci. U.S.A. 113(39), 5741-5748 (2016).
  4. Alfaro M., Berestycki H., Raoul G., The effect of climate shift on a species submitted to dispersion, evolution, growth and nonlocal competition. SIAM J. Math. Anal., 49(1), 562–596 (2017)..
  5. Baar M., Bovier A., Champagnat N. From stochastic, individual-based models to the canonical equation of adaptive dynamics - In one step. The Annals of Applied Probability, 27, no. 2, 1093-1170 (2017).
  6. Bansaye V., Kurtz T.G., Simatos F., Tightness for processes with fixed points of discontinuities and applications in varying environment, Electronic Com. Probab. Vol. 21, 2016, paper no. 81..
  7. Bansaye V., Camanes A., Aging branching process and queuing for an infinite bus line. To appear in Queuing Syst. and Alg. Pdf..
  8. Bansaye V., Ancestral lineages and limit theorems for branching Markov chains.To appear in Journal of Theoretical Probability. Pdf.
  9. Barton N., Etheridge A. et Véber A. The infinitesimal model: definition, derivation and implications . A paraître dans Theor. Pop. Biol., 2017 .
  10. Billiard S., Collet P., Ferrière R., Méléard S., Tran V.C., Stochastic dynamics for adaptation and evolution of microorganisms. Journal of the European Mathematical Society/, special issue for the Proceedings ECM2016, accepted (2017).
  11. Billiard S., Smadi C., The interplay of two mutations in a population of varying size: a stochastic eco-evolutionary model for clonal interference. Stochastic Processes and their Applications, 127(3): 701-748, 2017.
  12. Billiard S. and Alvergne A., Stochasticity in cultural evolution: a revolution yet to be achieved. sous presse à History and Philosophy of the Life Sciences.
  13. Brink-Spalink R., Smadi C., Genealogies of two linked neutral loci after a selective sweep in a large population of varying size. Advances in Applied Probabilities, 49(1): 279-326, 2017.
  14. Campillo F., Champagnat N., Fritsch C., On the variations of the principal eigenvalue with respect to a parameter in growth-fragmentation models. Communication in Mathematical Sciences, Vol. 15, Issue 7, pp. 1801-1819, 2017
  15. Champagnat N., Henry B., Moments of the frequency spectrum of a splitting tree with neutral Poissonian mutations. Electronic Journal of Probability, Vol. 21, paper no. 53, 1-34 (2016)
  16. Clavel J., Morlon H., Accelerated body-size evolution during cold climatic periods in the Cenozoic Proceedings of the National Academy of Sciences 114: 4183-4188 (2017)
  17. Cloez B., Fritsch C., Gaussian approximations for chemostat models in finite and infinite dimensions. Journal of Mathematical Biology, Vol. 75, Issue 4, pp. 805-843, 2017.
  18. Coron C., Costa M., Leman H., Smadi C., A stochastic model for speciation by mating preferences. Journal of Mathematical Biology, 2017.
  19. Coste C.F.D, Austerlitz F., Pavard S., Trait level analysis of multitrait population projection matrices.Theor Popul Biol. 2017 Aug;116:47-58. doi: 10.1016/j.tpb.2017.07.002. Epub 2017 Jul 27.
  20. Diekmann O., Gyllenberg M., Metz J.A.J., Finite Dimensional State Representation of Linear and Nonlinear Delay Systems. J Dyn Diff Equat. DOI 10.1007/s10884-017-9611-5
  21. Drame I., Pardoux E., Sow A.B., Non-binary branching process and non-Markovian exploration process. ESAIM Probab. Stat. 21 (2017), 1–33.
  22. Drury J., Grether G.F., Garland T., Morlon H., An assessment of phylogenetic tools for analyzing the interplay between interspecific interactions and phenotypic evolution Systematic Biology (2017)
  23. Forien R., Penington S., . A Central Limit Theorem for the Spatial Lambda Fleming-Viot Process with Selection. Electronic Journal of Probability 22, no. 5 (2017): 1–68. doi:10.1214/16-EJP20.
  24. Fritsch C., Campillo F., Ovaskainen O., A numerical approach to determine mutant invasion fitness and evolutionary singular strategies. Theoretical Population Biology, Vol.115, pp 89-99, 2017
  25. Grosjean N, Huillet T. Some combinatorial aspects of discrete non-linear population dynamics. Chaos, Solitons and Fractals, 93, 71-79, 2016.
  26. Grosjean N, Huillet T. On the genealogy and coalescence times of Bienaymé-Galton-Watson branching processes. CStochastic Models, August, 2017. doi: 10.1080/15326349.2017.1375958.
  27. Grosjean N, Huillet T. Additional aspects of the generalized linear-fractional branching process. Annals of the Institute of Statistical Mathematics, Volume 69, Issue 5, pp 1075-1097, 2017. DOI: 10.1007/s10463-016-0573-x.
  28. Grosjean N, Huillet T. Wright-Fisher-like models with constant population size on average. International Journal of Biomathematics, Volume: 10, Number: 06, 2017. doi.org/10.1142/S1793524517500784.
  29. Huillet T. On Bagchi-Pal urn models and related Pólya-Friedman ones.J. Stat. Mech. 093211, 2017. doi.org/10.1088/1742-5468/aa8c2b.
  30. Huillet T. Stochastic species abundance models involving special copulas.Physica A. Volume 490, 77-91, 2018. doi.org/10.1016/j.physa.2017.08.021
  31. Huillet T. Random evolutionary dynamics driven by fitness and house-of-cards mutations. Sampling formulae.Journal of Statistical Physics, Volume 168, Issue 1, 15-42, 2017.
  32. Huillet T., Martinez M., Möhle M. On polymorphism for discrete evolutionary dynamics driven either by selection or segregation distortion. to appear in: Computational and Applied Mathematics.
  33. Khalifa O., Balandrauid N., Lambert N., Auger I., Roudier J., Sénéchal A., Geneviève D., Picard C., Lefranc G., Touitou I., M'Madi Mrenda B., Benedito C., Pardoux E., Gagez A.-L., Pers Y.-M., Jorgensen C., Mahjoub T., Apparailly F., TMEM187-IRAK1 Polymorphisms Associated with Rheumatoid Arthritis Susceptibility in Tunisian and French Female Populations: Influence of Geographic Origin, Journal of Immunology Research, 2017, Article ID 4915950, 12 pages, 2017.
  34. Manceau M., Lambert A., Morlon H., A unifying comparative phylogenetic framework including traits coevolving across interacting lineages Systematic Biology 66: 551-568 (2017)
  35. Marguet A., Uniform sampling in a structured branching population. Bernoulli, en révision (2016)
  36. Méléard S., Modélisation aléatoire de la biodiversité : de l’importance des paramètres d’échelle, Gazette de la SMF, 2017.
  37. Mirrahimi S., A Hamilton-Jacobi approach to characterize the evolutionary equilibria in heterogeneous environments, Mathematical Models and Methods in Applied Sciences, Vol. 27.13 (2017), pp. 2425-2460
  38. Nassar E., Pardoux E. On the large-time behaviour of the solution of a stochastic differential equation driven by a Poisson point process. Adv. in Appl. Probab. 49 (2017), no. 2, 344–367.
  39. Pardoux E., Samegni-Kepgnou B., Large deviation principle for epidemic models. J. Appl. Probab. 54 (2017), no. 3, 905–920.
  40. Sanchez-Reyes L., Morlon H., Magallon S., Uncovering higher-taxon diversification dynamics from clade age and species-richness data Systematic Biology 66: 367-378 (2017)
  41. Smadi C., The effect of recurrent mutations on genetic diversity in a large population of varying size. Acta Applicandae Mathematicae, 149(1): 11-51, 2017 .

2016

  1. Abu awad D., Billiard S., Tran V.C., Perenniality induces high inbreeding depression in self-fertilising species species. Theoretical Population Biology, (Déc. 2016).
  2. Bansaye V., Méléard S., Richard M. Speed of coming down from infinity for birth and death processes.Adv. in Appl. Probab. 48 (2016), no. 4, 1183–1210., (2016).
  3. Bansaye V., Vatutin V., On the survival of a class of subcritical branching processes in random environment. Bernoulli, (2016).
  4. Barton N, Etheridge A, Kelleher J et Véber A. Spread of pedigree versus genetic ancestry in spatially distributed populations. Theor. Pop. Biol. 108:1-12, (2016).
  5. Billiard S., Collet P., Ferrière R., Méléard S., Tran V.C. The effect of competition and horizontal trait hesitance on invasion, fixation and polymorphism. J. Theoret. Biol. 411 (2016), 48–58.
  6. Bi H., Delmas J-F., Total length of the genealogical tree for quadratic stationary continuous-state branching processes, Ann. Inst. H. Poincaré, Vol. 52(3), pp. 1321-1350, 2016.
  7. Brink-Spalink R., Smadi C., Genealogies of two linked neutral loci after a selective sweep in a large population of varying size. À paraître dans Advances in Applied Probability.
  8. Calenge C., Albaret M., Léger F., Vandel J.-M., Chadoeuf J. , Giraud C., Huet S., Julliard R., Monestiez P., Piffady J. , Pinaud D., Ruette S., Premières cartes d'abondance relative de six mustélidés en France. Modélisation des données collectées dans les « carnets de bord petits carnivores » de l'ONCFS. Faune Sauvage, (130): 17, (2016).
  9. Calsina A., Cuadrado S., Desvillettes L., Raoul G., Asymptotic profile in selection-mutation equations: Gauss versus Cauchy distributions, Journal of Mathematical Analysis and Applications 444(2), 1515--1541 (2016).
  10. Campillo, F., Champagnat, N., Fritsch, C.: Links between deterministic and stochastic approaches for invasion in growth-fragmentation-death models. Journal of Mathematical Biology, Vol. 73, Issue 6, pp. 1781-1821, 2016 , (2016).
  11. Champagnat, N., Henry, B.: Moments of the frequency spectrum of a splitting tree with neutral Poissonian mutations. Electronic Journal of Probability, (2016).
  12. Chantepie, S., Teplitsky, C., Pavard, S., Sarrazin, F., Descaves, B., Lecuyer, P. & Robert, A.: Age-related variation and temporal patterns in the survival of a long-lived scavenger. Oikos 125: 167–178. doi:10.1111/oik.02216 , (2016).
  13. Chazottes J.R., Collet P., Méléard S. Sharp asymptotics for the quasi-stationary distribution of birth-and-death processes, Probab. Theory Related Fields 164, no. 1-2, 285–332, (2016).
  14. Costa M., A piecewise deterministic model for prey-predator communities. À paraître dans Annals of Applied Probability.
  15. Costa M., Hauzy C., Loeuille N., Méléard S. Stochastic eco-evolutionary model of a prey-predator community. Journal of Mathematical Biology, 72(3), 573--622, (2016).
  16. Cousien A.,Tran V.C., Deuffic-Burban S., Jauffret-Roustide M., Dhersin J.-S., Yadanpanah Y., Hepatitis C treatment as prevention of viral transmission and liver-related morbidity in persons who inject drugs Hepatology (to appear), DOI:10.1002/hep.28227.
  17. Desquilbert M., Dorin B., Couvet D.: Land Sharing vs Land Sparing to Conserve Biodiversity: How Agricultural Markets Make the Difference. Environ. Model. Asses., in press , (2016).
  18. Drury J., Clavel J., Manceau M., Morlon H., Estimating the effect of competition on trait evolution using maximum likelihood inference Systematic Biology 65: 700-710 (2016)
  19. Gandon S., Mirrahimi S., A Hamilton-Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations, Comptes Rendus Mathematique, Vol. 355.2, (2016), pp. 155-160.
  20. Geritz S.A.H., Metz J.A.J., Rueffler C., Mutual invadability near evolutionarily singular strategies for multivariate traits, with special reference to the strongly convergence stable case.J Math Biol. 72: 1081-1099 (online first in 2015). DOI 10.1007/s00285-015-0944-6.
  21. Giraud C., Roueff F., Sanchez-Perez A., Aggregation of predictors for non stationary sub-linear processes and online adaptive forecasting of time varying autoregressive processes. Annals of Statistics 2015, Vol. 43, No. 6, 2412-2450.
  22. Griette Q., Raoul G., Existence and qualitative properties of travelling waves for an epidemiological model with mutations, Journal of Differential Equations 260, 7115--7151 (2016).
  23. Grosjean N., Huillet T., On simple age-structured population models. À paraître (d'abord en ligne) dans Applied Mathematical Modelling, (2016).
  24. Grosjean N., Huillet T., Deterministic versus stochastic aspects of superexponential population growth models. Physica A, 455, 27-37, (2016).
  25. Grosjean N., Huillet T., On a coalescence process and its branching genealogy. Journal of Applied probability 53.4, (Déc. 2016).
  26. Grosjean N., Huillet T., Rollet G., On discrete evolutionary dynamics driven by quadratic interactions. À paraître (d'abord en ligne) dans Theory in Biosciences, (2016). DOI: 10.1007/s12064-016-0232-z
  27. Huillet T., On Mittag-Leffler distributions and related stochastic processes. Journal of Comput. and Appl. Math.,Volume 296, Pages 181-211, (Avril 2016).
  28. Huillet T., Random walk Green kernels in the neutral Moran model conditioned on survivors at a random time to origin. Mathematical Population Studies, no 23, Issue 3, pp. 164-200, (2016).
  29. Le Cœur, C., Chantepie, S., Pisanu, B., Chapuis, J.L. & Robert, A.: Inter-annual and inter-individual variations in survival exhibit strong seasonality in a hibernating rodent. Oecologia 181: 795. doi:10.1007/s00442-016-3597-2 , (2016).
  30. Legrand J., Bolotin-Fukuhara M., Bourgais A., Fairhead C., Sicard D., Life-history strategies and carbon metabolism gene dosage in the Nakaseomyces yeasts. FEMS Yeast Res, 16 (2), (2016)
  31. Leman H., Convergence of an infinite dimensional stochastic process to a spatially structured trait substitution sequence. Stochastics and Partial Differential Equations: Analysis and Computations:1-36, (2016).
  32. Lewitus E., Morlon H., Characterizing and comparing phylogenies from their Laplacian spectrum Systematic Biology 65: 495-507 (2016)
  33. Lewitus E., Morlon H., Natural constraints to species diversification PloS Biology 14(8): e1002532 (2016)
  34. Lhomme E., Urien C., Legrand J., Dousset X., Onno B., Sicard D., Sourdough microbial community dynamics: An analysis during French organic bread-making processes. Food Microbiol, 53 (Pt A) 41-50, (2016).
  35. Mazzucco R., Dieckmann U., Metz J.A.J., Epidemiological, evolutionary, and economic determinants of eradication tails J Theor Biol 405: 58-65, http://dx.doi.org/10.1016/j.jtbi.2016.03.019
  36. Metz J.A.J., Geritz S.A.H. , Frequency dependence 3.0: an attempt at codifying the evolutionary ecology perspective. J Math Biol 72: 1011-1037. DOI 10.1007/s00285-015-0956-2, (2016).
  37. Metz J.A.J, Stanková K., Johansson J., The adaptive dynamics of life histories: from fitness-returns to selection gradients and Pontryagin’s maximum principle. J Math Biol 72: 1125–1152 (online first in 2015) DOI 10.1007/s00285-015-0938-4
  38. Mirrahimi S., Roquejoffre J.-M., A class of Hamilton-Jacobi equations with constraint: uniqueness and constructive approach, Journal of differential equations, Vol. 250.5 (2016), pp. 4717--4738.
  39. Missa O., Dytham C., Morlon H., Understanding how biodiversity unfolds through time under neutral theory Philosophical Transaction Royal Society B 371: 20150226 (2016)
  40. Moen D.S., Morlon H., Wiens J.J., Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs Systematic Biology 65: 146-160 (201)6
  41. Morlon H., Lewitus E., Condamine F.L., Manceau M., Clavel J., Drury J., RPANDA: an R package for macroevolutionary analyses on phylogenetic trees Methods in Ecology & Evolution (2016)
  42. Palau S., Pardo J.C., Smadi C., Asymptotic behaviour of exponential functionals of Lévy processes with applications to random processes in random environment. ALEA, Lat. Am. J. Probab. Math. Stat., 13, 1235–1258, 2016
  43. Pardoux E., Probabilistic models of population evolution. Scaling limits, genealogies and interactions. Mathematical Biosciences Institute Lecture Series. Stochastics in Biological Systems, 1.6. Springer, [Cham]; MBI Mathematical Biosciences Institute, Ohio State University, Columbus, OH, 2016. viii+125 pp. ISBN: 978-3-319-30326-0; 978-3-319-30328-4
  44. Pavoine S.: A guide through a family of phylogenetic dissimilarity measures among sites. Oikos, In press, (2016).
  45. Pavoine S., Marcon E., Ricotta C.:"Equivalent numbers" for species, phylogenetic, or functional diversity in a nested hierarchy of multiple scales. Methods in Ecology and Evolution. In press. (2016).
  46. Porcher E., Lande R.: Inbreeding depression under mixed outcrossing, self-fertilization and sib-mating. BMC Evolutionary Biology,16:105, (2016).
  47. Ricotta C., de Bello F., Moretti M., Caccianiga M., Cerabolini B.E., Pavoine S.: Measuring the functional redundancy of biological communities: A quantitative guide. Methods in Ecology and Evolution. In press, (2016).
  48. Ricotta C., Podani J., Pavoine S.: A family of functional dissimilarity measures for presence and absence data. Ecology and Evolution. In press, (2016).
  49. Sainudiin R, Thatte B., Véber A., Ancestries of a recombining diploid population. J. Math. Biol., 72:363-408, (2016).
  50. Sainudiin R. et Véber A., A Beta-splitting model for evolutionary trees. R. Soc. open sci., 3:160016, (2016).
  51. Sainudiin R., Welch D., The Transmission Process: A Combinatorial Stochastic Process on Binary Trees over the Contact Network of Hosts in an Epidemic. Journal of Theoretical Biology, (2016).
  52. Sauve A. M. C., Thébault E., Pocock M. J. O., Fontaine C., How plants combine pollination and herbivory networks: patterns and contribution to community stability. Ecology, (2016).
  53. Smadi C., Vatutin V.A., Reduced two-type decomposable critical branching processes with possibly infinite variance. Markov Processes and Related Fields, 21(2): 311-358, (2016).
  54. Trapman P., Ball F., Dhersin J.-S., Tran V.C., Wallinga J., Britton T., Inferring R 0 in emerging epidemics—the effect of common population structure is small Journal of the Royal Society Interface, Vol. 13, 20160288 (2016).
  55. Veron S., Davies T.J., Cadotte M.W., Clergeau P., Pavoine S.: Predicting loss of evolutionary history: where are we? Biological Reviews In press, (2016).
  56. Veron S., Penone C., Clergeau P., Costa G.C., Oliveira B.F., São-Pedro V.A., Pavoine S.: Integrating data-deficient species in analyses of evolutionary history loss. Ecology and Evolution In press, (2016).
  57. Yguel B., Jactel H., Pearse S.I., Moen D., Winter M., Hortal J., Helmus R.M., Kühn I., Pavoine S., Purschke O., Weiher E., Violle C., Ozinga W., Brändle M., Bartish I.: Prinzing A.: The evolutionary legacy of diversification predicts ecosystem function. American Naturalist. In press, (2016).

2015

  1. Bansaye V., Huang C.: Law of large numbers for some Markov chains along non homogeneous genealogies. ESAIM (2015).
  2. Bansaye V. & Méléard S.: Stochastic Models for Structured Populations - Scaling Limits and Long Time Behavior. Springer MBI Series 1.4 (2015)
  3. Bansaye V., Simatos F.: A sufficient condition for tightness of time-inhomogeneous Markov processes. Electronic Journal of Probability. (2015).
  4. Billiard S., Ferrière R., Méléard S., Tran V.C. : Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks. J. Math. Biol. 71 (2015), no. 5, 1211-1242.
  5. Calenge C. , Chadoeuf J., Giraud C., Huet S., Julliard R., Monestiez P., Piffady J., Pinaud D., Ruette S.: The spatial distribution of Mustelidae in France. PLoS ONE 10(3).
  6. Champagnat, N., Villemonais, D. Exponential convergence to quasi-stationary distribution and Q-process. Probability Theory and Related Fields, online first, paper version to appear (2015).
  7. Chazottes J.R., Collet P. and Méléard S. : Sharp asymptotics for the quasi-stationary distribution of birth-and-death processes. Probab. Theory Related Fields. Online (2015).
  8. Coron C., A model for Mendelian populations demogenetics. ESAIM: Proc. 51:122-132, (2015).
  9. Clémençon S., Cousien A., Dávila Felipe M., & Tran V.C.: On Computer-Intensive Simulation and Estimation Methods for Rare Event Analysis in Epidemic Models. Statistics in Medicine/, Vol. 34, No. 28, 3696-3713 (2015) lien
  10. Clémençon S., De Arazoza H., Rossi F., & Tran V.C.: A statistical network analysis of the HIV/AIDS epidemics in Cuba. Social Network Analysis and Mining, Vol. 5, Article 58 (2015) lien
  11. Condamine, F., Nagalingum, N.S., Marshall, C.R., Morlon, H. Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating BMC Evolutionary Biology 15:65 (2015).
  12. Coron C.: Slow-fast stochastic diffusion dynamics and quasi-stationary distributions for diploid populations. J. Math. Biol. (2016), Volume 72, Issue 1, pp 171-202.
  13. Costa M., Hauzy C., Loeuille N., Méléard S.: Stochastic eco-evolutionary model of a prey-predator community. J. Math. Biol., Online (2015).
  14. Cousien A., Tran V.C., Jauffret-Roustide M., Dhersin J.S., Deuffic-Butban S., Yazdanpanah Y., Dynamic modelling of HCV transmission among drug users: a methodological review. Journal of Viral Hepatitis, Vol. 22, No. 3, 213-229 (2015).
  15. da Silva T., Albertin W., Dillmann C., Bely M., la Guerche S., Giraud C., Huet S., Sicard D., Masneuf-Pomarede I., de Vienne D., Marullo P.: Hybridization within Saccharomyces Genus Results in Homoeostasis and Phenotypic Novelty in Winemaking Conditions. PloS ONE 10(5)
  16. Fontbona J. & Méléard S.: Non local Lotka-Volterra system with cross-diffusion in an heterogeneous medium, J. Math. Biol. 70 (2015), no. 4, 829-854.
  17. Giraud C., Calenge C., Coron, C., Julliard R.: Capitalizing on opportunistic data for monitoring relative species abundances. Biometrics (Published Online Oct 2015)
  18. Lambert, A., Morlon, H., Etienne, R.S. The reconstructed tree in the lineage-based model of protracted speciation Journal of Mathematical Biology 70: 367-397 (2015).
  19. Leman H., Méléard S., Mirrahimi S. : Influence of a spatial structure on the long time behavior of a competitive Lotka-Volterra type system. Disc. Cont. Dyn. Syst. - B. (2015).
  20. Lewitus, E., Morlon, H. Characterizing and comparing phylogenies from their Laplacian spectrum, Systematic Biology, 2015.
  21. Manceau, M., Lambert, A., Morlon, H. Phylogenies support out-of-equilibrium models of biodiversity Ecology Letters 18: 347-356 (2015).
  22. Martin J., Sabatier Q., Gowan T., Giraud C., Gurarie E., Calleson S., Ortega-Ortiz J., Rycyk A., Koslovsky S., : A quantitative framework for investigating risk of deadly collisions between marine wildlife and boats. To appear in Methods in Ecology and Evolution.
  23. Méléard S., Mirrahimi S.:Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity, Comm. Partial Differential Equations 40 (2015), no. 5, 957-993.
  24. Moen, D.S., Morlon, H., Wiens, J.J. Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs. Systematic Biology, (2015).
  25. Morlon, H., O'Connor, T., Bryant, J.A., Charkoudian, L.K., Docherty, K.M., Jones, E., Kembel, S., Green, J.L., Bohannan, B.J.M. The biogeography of putative microbial antibiotic production PloS One 10(6): e0130659 (2015).
  26. Mouquet, N., Lagadeuc, Y., Devictor, V., Doyen, L., Duputié, A., Eveillard, D., Faure, D., Garnier, E., Gimenez, O., Huneman, H., Jabot, F., Jarne, P., Joly, D., Julliard, J., Kéfi, S., Kergoat, G.J., Lavorel S., Le Gall, L., Morlon, H., Pinay, G., Pradel, R., Schurr, F.M., Thuiller, W., Loreau, M. Predictive ecology in a changing world Journal of Applied Ecology 5: 1293-1310, (2015).
  27. Rolland, J., Condamine, F.L., Champak, R.B., Jiguet, F., Morlon, H. Dispersal is a major driver of the latitudinal diversity gradient of Carnivora. Global Ecology and Biogeography 24: 1059-1071 (2015).
  28. Rolland, J., Lavergne, S., Manel, S. (2015). Combining Niche Modelling and Landscape Genetics to Study Local Adaptation: A Novel Approach Illustrated using Alpine Plants. Perspectives in Plant Ecology, Evolution and Systematics. (in press)
  29. Sainudiin R, Thatte B., Véber A. Ancestries of a recombining diploid population. J. Math. Biol., Online First, 2015.
  30. Sauve A., Fontaine C., Thébault E.: Stability of a diamond-shaped module with multiple interaction types. Theoretical Ecology, p.1-11 (2015). lien
  31. Smadi C. : An Eco-Evolutionary approach of Adaptation and Recombination in a large population of varying size. Stochastic Processes and their Applications, 125(5): 2054--2095, (2015), (lien).
  32. Tucker C.M., Cadotte M.W., Carvalho S.B., Davies J., Ferrier S., Fritz S.A., Grenyer R., Helmus M.R., Jin L.S., Mooers A.O., Pavoine S., Purschke O., Redding D.W., Rosauer D.F., Winter M., Mazel F.: A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews. In press. , (2015).
  33. Warren, B.H., Simberloff, D., Ricklefs, R.E., Aguilée , R., Condamine, F.L., Gravel, D., Morlon, H., Mouquet, N., Rosindell, J., Casquet, J., Conti, E., Cornuault, J., Fernández-Palacios, J.M., Hengl, T., Norder, S.J., Rijsdijk, K.F., Sanmartín, I., Strasberg, D., Triantis, K., Valente, L.M., Whittaker, R.J., Gillespie, R.G., Emerson, B.C., Thébaud, C. Islands as model systems in ecology and evolution: prospects fifty years after MacArthur-Wilson Ecology Letters 8: 200-216 (2015).

2014

  1. Abu Awad D., Gallina S., Bonamy C., Billiard S.: The Interaction between Selection, Demography and Selfing and How It Affects Population Viability. PLoS ONE 9(1): e86125 (2014).
  2. Bansaye V., Vatutin V.: Random walk with heavy tail and negative drift conditioned by its minimum and final values. Markov Processes and Related Fields (2014).
  3. Champagnat N., Jabin P.E., Méléard S. : Adaptation in a stochastic multi-resources chemostat model. J. Math. Pures Appl. (9) 101 (2014), no. 6, 755-788.92D25 (37N25 60J75 60J80).
  4. Coron C.: Stochastic modeling of density-dependent diploid populations and extinction vortex. Adv. in Appl. Probab. 46:446--477, (2014).
  5. Etienne R.S., Morlon H., Lambert A. (2014) : Estimating the duration of speciation from phylogenies Evolution 68(8): 2430-2440
  6. Fontbona J., Méléard S. : Non local Lotka-Volterra system with cross-diffusion in an heterogeneous medium, J. Math. Biol.. Online (2014).
  7. Galis F., Carrier D.R., van Alphen J., van der Mije S.D., Van Dooren T.J.M., Metz J.A.J., ten Broek C.M.A. : (2014) Fast running restricts evolutionary change of the vertebral column in mammals. PNAS 111(31): 11401-11406. lien
  8. Gupta A., Metz J.A.J., Tran V.C. (2014) A new proof for the convergence of an individual based model to the trait substitution sequence. Acta Applicanda Mathematicae 121(1): 1-27
  9. Huber B., Le Poul Y., Whibley A., Navarro N., Martin A., Baxter S., Shah AB., Gilles B., Wirth T., McMillan OW., & Joron M.: Conservatism and novelty in the genetic architecture of adaptation in Heliconius butterflies. Heredity (accepted)
  10. Le Poul Y., Whibley A., Chouteau M., Prunier F., Llaurens V., & Joron M.; Evolution of dominance mechanisms at a butterfly mimicry supergene. Nature Communications (in press).
  11. Méléard S., Mirrahimi S. : Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity, A paraître dans Comm. in Part. diff. Equat. (2014).
  12. Mirrahimi S., Perthame B., Wakano J.Y.: Direct competition results from strong competition for limited resource. J. Math. Biol. Online first (2014).
  13. Moen D., Morlon H. : From dinosaurs to modern bird diversity - Extending the time-scale of adaptive radiation PLoS Biology 12(5) (2014): e1001854
  14. Moen D., Morlon H : Why does diversification slow down? Trends in Ecology and Evolution 29: 190-197 (2014)
  15. Morlon H. : Phylogenetic approaches for studying diversification Ecology Letters 17: 508-525 (2014)
  16. Morlon H., Kefi S., Martinez N. : Effects of trophic similarity on community composition Ecology Letters (in press)
  17. Richard M.: Splitting trees with neutral mutations at birth. Stochastic Processes and their Applications, (2014), 124(10), 3206-3230.
  18. Rolland J., Condamine F.L., Jiguet F., and Morlon H.: Faster speciation and reduced extinction in the tropics explain the mammalian latitudinal diversity gradient. PloS Biology I12(1): e1001775.
  19. Rolland J., Jiguet F., Jønsson K.A., Condamine F.L., Morlon H. : Settling down of seasonal migrants promotes bird diversification Proceedings of the Royal Society (2014) B 281: 20140473
  20. Sainudiin R., Stadler T., Véber A.: Finding the best resolution for the Kingman-Tajima coalescent: theory and applications. J. Math. Biol. (2014).
  21. Sauve A., Fontaine C., Thébault E: Structure-stability relationships in networks combining mutualistic and antagonistic interactions. Oikos. (2014).

2013

  1. Bansaye V., Boeinghoff C.: Lower large deviations for supercritical branching processes in random environment. Proceedings of Steklov Institute of Mathematics, 3 (2013).
  2. Bansaye V., Boeinghoff C.: Small positive values for supercritical branching processes in random environment. À paraître dans Ann. Inst. H. Poincaré, (2013).
  3. Bansaye V., Méléard S., Véber A.: Les différentes échelles de temps de l'évolution. MATAPLI. Vol. 100 (2013)
  4. Bansaye V., Pardo Millan J.C., Smadi C.: On the extinction of Continuous State Branching Processes with catastrophes. Electronical Journal of Probability, 106, 31p (2013).
  5. Barton N., Etheridge A., Kelleher J., Véber A.: Genetic hitchhiking in spatially extended populations. Theor. Pop. Biol. Online First (2013)
  6. Barton N., Etheridge A., Kelleher J., Véber A.: Inference in two dimensions: allele frequencies versus lengths of shared sequence blocks. Theor. Pop. Biol. Online First (2013)
  7. Barton N.H., Etheridge A.M., Véber A.: Modelling evolution in a spatial continuum. J. Stat. Mechanics. Vol. P01002 (2013)
  8. Berestycki N., Etheridge A.M., Véber A.: Large scale behaviour of the spatial Lambda-Fleming-Viot process. Ann. Inst. H. Poincaré Probab. Statist. 45: 374-401 (2013)
  9. Blein-Nicolas M. , Albertin W., Valot B., Marullo P., Sicard D., Giraud C., Huet S., Bourgais A., Dillmann C., de Vienne D., Zivy M.: Yeast Proteome Variations Reveal Different Adaptive Responses to Grape Must Fermentation. Mol Biol Evol. 2013 Jun;30(6):1368-83
  10. Collet P., Martinez S., Méléard S., San Martín J: Stochastic models for a chemostat and long time behavior. Adv. Appl. Probab. (2013)
  11. Collet P., Méléard S., Metz J.A.J.: A rigorous model study of adaptive dynamics for Mendelian diploids. J. Math. Biol., 67(3): 569-607. (2013).
  12. Condamine F., Rolland J., Morlon H.: Macroevolutionary perspectives to environmental change. Ecology Letters. Online (2013).
  13. Coron C., Méléard S., Porcher E., Robert A.: Quantifying the mutational meltdown in diploid populations. American Naturalist. 181(5): 623-636 (2013).
  14. de Roos A.M., Metz J.A.J., Persson L.: (2013) Ontogenetic symmetry and asymmetry in energetics. J. Math. Biol. 66(4-5): 889-914 (DOI 10.1007/s00285-012-0583-0)
  15. Delmas J.F. and Hénard O.: A Williams' decomposition for spatially dependent superprocesses. Elect. Journ. of Probab., 18(37): 1-43, (2013) (doi:10.1214/EJP.v18-1801).
  16. Giraud C., Julliard R., Porcher E.: Delimiting synchronous populations from monitoring data. Environmental and Ecological Statistics, Vol. 20 (2013), no 3, pp. 337--352.
  17. Jones R.T., Poul Y., Whibley A., Mérot C., Joron M.: Wing shape variation associated with mimicry in butterflies. Evolution, 67(8), 2323-2334 (2013).
  18. Joost S., Vuilleumier S., Jensen J.D., Schoville S., Leempoel K., Stucki S., Widmer I., Melodelima C., Rolland J., Manel S.: Uncovering the genetic basis of adaptive change: on the intersection of landscape genomics and theoretical population genetics. Molecular Ecology. 22, 3659-3665 (2013).
  19. Lafitte-Godillon P., Raschel K., Tran V.C.: Extinction probabilities for a distylous plant population modeled by an inhomogeneous random walk on the positive quadrant. SIAM Journal on Applied Mathematics (SIAP), 73(2): 700-722 (2013).
  20. Méléard S., Roelly S. : Evolutive two-level population process and large population approximations. Ann. Univ. Buchar. Math. Ser. 4(LXII) (2013), no. 1, 37-70.
  21. Metz J.A.J. (2013) On the concept of individual in ecology and evolution. J Math Biol 66(4-5): 635-647 DOI 10.1007/s00285-012-0610-1
  22. Metz J.A.J., de Kovel C.G.F. (2013) The canonical equation of adaptive dynamics for Mendelian diploids and haplo-diploids. Interface Focus 3: 20130025
  23. Metz J.A.J., Tran V.C.: Daphnias: from the individual based model to the large population equation. Journal of Mathematical Biology, special issue in honor of Odo Diekmann, Vol. 66, No. 4-5, 915-933 (2013).
  24. Mirrahimi S., Perthame B., Wakano J.Y.: Evolution of species trait through resource competition. J. Math. Biol. Online first (2013).
  25. Mirrahimi S., Raoul G.: Population structured by a space variable and a phenotypical trait. Theor. Pop. Biol. 84: 87-103 (2013).
  26. Richard M.: Lévy processes conditioned on having a large height process. Ann. Instit. H. Poincaré, (2013), 49(4),982-1013.
  27. Rueffler C., Metz J.A.J.: (2013) Necessary and sufficient conditions for R0 to be a sum of contributions of fertility loops. J. Math. Biol. 66(4-5): 635-647 DOI 10.1007/s00285-012-0575-0
  28. Rueffler C., Van Dooren T.J.M. & Metz J.A.J. (2013) What life cycle graphs can tell about the evolution of life histories. J. Math. Biol. 66 (1):225-279 DOI 10.1007s00285-012-0509-x
  29. Véber A., Wakolbinger A.: The spatial Lambda-Fleming-Viot process: an event-based construction and a lookdown representation. À paraître dans Ann. Instit. H. Poincaré.

2012

  1. Billiard S., Tran V.C.: A general stochastic model for sporophytic self-incompatibility. J. Math. Biol. 64:163-210 (2012).
  2. Blein-Nicolas M., Xu H., de Vienne D., Giraud C., Huet S., Zivy M.: Including shared peptides for estimating protein abundances: a significant improvement for quantitative proteomics. Proteomics 12(18):2797-2801 (2012).
  3. Bouin E., Calvez V., Meunier N., Mirrahimi S., Perthame B., Raoul G., Voituriez R.: Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration, Comptes rendus Mathematiques 350:761-766 (2012).
  4. Dornelas M., Magurran A., Buckland S.T., Chao A., Chazdon R.L., Colwell R.K., Curtis T., Gaston K.J., Gotelli N.J., Kosnik M., McGill B., McCune J.L., Morlon H., Mumby P.J., Ovreås L., Studeny A., Vellend M.: Quantifying temporal change in biodiversity: challenges and opportunities. Proc. of the Roy. Soc. B. (2012).
  5. Etheridge A.M., Véber A.: The spatial Lambda-Fleming-Viot process on a large torus: genealogies in the presence of recombination. Ann. Appl. Probab. 22:2165-2209 (2012).
  6. Jourdain B., Méléard S., Woyczynski W.: Lévy flights in evolutionary ecology. J. Math. Biol. 65(4):677-707 (2012).
  7. Méléard S., Tran V.C.: Slow and fast scales for superprocess limits of age-structured populations. Stoc. Proc. Appl. 122:250-276 (2012).
  8. Méléard S., Tran V.C.: Nonlinear historical superprocess approximations for population models with past dependence, Electronic Journal of Probability, 17(47):1-32 (2012).
  9. Méléard S., Villemonais D.: Quasi-stationary distributions and population processes. Probab. Surv. 9:340-410 (2012).
  10. Mirrahimi S.: Adaptation and migration of a population between patches, Discrete and Continuous Dynamical System 18(3):753-768 (2012).
  11. Mirrahimi S., Souganidis P.E.: A homogenization approach for the motion of motor proteins. NoDEA 20(1): 129-147 (2012).
  12. Morlon H.: Microbial cooperative warfare. Science 337: 1184-1185 (2012).
  13. Morlon H., Kemps B., Plotkin J.B., Brisson D.: Explosive radiation of a bacterial species group Evolution 66: 2577-2586 (2012).
  14. Pavard S., Branger F.: Effect of maternal and grandmaternal care on population dynamics and human life-history evolution: A matrix projection model. Theoret. Pop. Biol. (2012).

2011

  1. Bansaye V., Boeinghoff C.: Upper large deviations for Branching Processes in Random Environment with heavy tails. Electron. J. Probab. 16:1900-1933 (2011).
  2. Bansaye V., Delmas J.F., Marsalle L., Tran V.C.: Limit theorems for Markov processes indexed by continuous time Galton-Watson trees. Ann. of App. Probab. 21:2263-2314 (2011).
  3. Bansaye V., Dombry C., Mazza C.: Phenotypic diversity and population growth in fluctuating environment: a MBPRE approach. Adv. in Appl. Probab. 43(2):375-398 (2011).
  4. Bansaye V., Tran V.C.: Branching Feller diffusion for cell division with parasite infection. ALEA Lat. Am. J. Probab. Math. Stat. 8:95-127 (2011).
  5. Champagnat N., Méléard, S.: Polymorphic evolution sequence and evolutionary branching. Probab. Theory Related Fields, 151(1):45-94 (2011).
  6. Colle, P., Martinez S., Méléard S., San Martin J.: Quasi-stationarity distributions for structured birth and death process with mutations. Probab. Th. Rel. Fields, 151(1):191-231 (2011).
  7. Decreusefond L., Dhersin J.S., Moyal, P., Tran, V.C.: Large graph limit for a SIR process in random network with heterogeneous connectivity, Ann. of Appl. Probab. 22(2):541-575 (2011).
  8. Fontaine C., Guimarães P.R., Kéfi S., Loeuille N., Memmott J., Van Der Putten W.H., Thébault E.: The ecological and evolutionary implications of merging different types of networks. Ecol. Lett., 14:1170-1181 (2011).
  9. Gyllenberg M., Metz J.A.J., Service R.: When do optimisation arguments make evolutionary sense? Chapitre du livre ''The Mathematics of Darwin's Legacy'', Mathematics and Biosciences in Interaction. J.F. Rodrigues and F. Chalub editors, Birkhäuser Basel, pp. 235-269 (2011).
  10. Huillet T.: On the Karlin-Kimura approaches to the Wright-Fisher diffusion with fluctuating selection. J. Stat. Mech. Th. and Exp., P02016.
  11. Huillet T.: Nonconservative diffusions on [0,1] with killing and branching. Applications to Wright-Fisher models with or without selection. Internat. J. Stoch. Analysis, Article ID 605068.
  12. Huillet T., Martinez S.: Duality and Intertwining for discrete Markov kernels: relations and examples. Adv. Appl. Probab., 43:437-460 (2011).
  13. Huillet T., Moehle M.: On the extended Moran model and its relation to coalescents with multiple collisions. Theor. Pop. Biol., Online first.
  14. Jesse M., Mazucco R., Metz J.A.J., Diekmann U., Heesterbeek J.A.P.: How to calculate a threshold for infectious diseases in a metapopulation. Plos one, 66:e2406 (2011).
  15. Lorz A., Mirrahimi S., Perthame B.: Dirac mass dynamics in multidimensional nonlocal parabolic equations. Comm. in PDEs, 36:1071-1098 (2011).
  16. Méléard S.: Random Modeling of Adaptive Dynamics and Evolutionary Branching. Chapitre du livre ''The Mathematics of Darwin's Legacy'', Mathematics and Biosciences in Interaction. J. F. Rodrigues and F. Chalub editors, Birkhäuser Basel, pp. 175-192 (2011).
  17. Méléard S., Metz J.A.J., Tran V.C.: Limiting Feller diffusions for logistic populations with age-structure, 58th World Statistics Congress of the International Statistical Institute, Dublin Ireland (2011).
  18. Metz J.A.J.: Thoughts on the geometry of meso-evolution: collecting mathematical elements for a postmodern synthesis. In: Chalub, F.A. and Rodrigues, J.F. eds. The Mathematics of Darwin's Legacy. Basel: Birkhauser, pp. 193-231 (2011).
  19. Metz J.A.J., Leimar O.: A simple fitness proxy for ESS calculations in structured populations with continuous traits, with applications to the evolution of haplo-diploids and genetic dimorphisms. J. Biol. Dyn. 5(2):163-190 (2011).
  20. Mirrahimi S., Perthame B., Bouin E., Millien P.: Population formulation of adaptative evolution ; theory and numerics. Chapitre du livre "The Mathematics of Darwin's Legacy?", Mathematics and Biosciences in Interaction. J. F. Rodrigues and F. Chalub editors, Birkhäuser Basel, pp. 159-174 (2011).
  21. Morlon H., Parsons T.L., Plotkin J.: Reconciling molecular phylogenies with the fossil record. PNAS 108:16327-16332 (2011).
  22. Rolland J., Cadotte M.W., Davies J., Devictor, V., Lavergne, S., Mouquet, N., Pavoine, S., Rodrigues, A., Thuiller, W., Turcati, L., Winter, M., Zupan L., Jabot F., Morlon H.: Using phylogenies in conservation: new perspectives Biology Letters 8: 692-694 (2011).
  23. Van den Berg F., Bacaer N., Metz J.A.J., Lannou, C., Van Den Bosch, F.: Periodic host absence can select for higher or lower parasite transmission rates. Evol. Ecol. 25(1):121-137 (2011).
  24. Villemonais D.: Interacting particle systems and Yaglom limit approximation of diffusions with unbounded drift. Electron. J. Probab, 16:1663-1692 (2011).

2010

  1. Barton N.H., Etheridge A.M., Véber A.: A new model for evolution in a spatial continuum. Electron. J. Probab., 15:162-216 (2010).
  2. Cattiaux P., Méléard S.: Competitive or weak cooperative stochastic Lotka-Volterra systems conditioned on non-extinction. J. Math. Biology 6:797-829 (2010).
  3. Diekmann O., Gyllenberg M., Metz J.A.J., Nakaoka, S., De Roos, A.M.: Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example. J. Math Biol. 61:277-318 (2010).
  4. Diekmann O., Metz J.A.J.: How to lift a model for individual behaviour to the population level? Phil Trans. Roy. Soc. London B. 365(1557):3523-3530 (2010).
  5. Fontbona J., Guérin H., Méléard S.: Measurability of optimal transportation and strong coupling of martingale measures. Electron. Commun. Probab. 15:124-133 (2010)

2009

  1. Méléard S.: Introduction to stochastic models for evolution. Markov Process. Related Fields 15 (2009), no. 3, pp.259-264.